Scientific Committee
Comité scientifique
Michael A. Bennett (University of British Columbia)
Stéphane Fischler (Université Paris-Sud)
Noriko Hirata-Kohno (Nihon University)
Holly Krieger (University of Cambridge)
Fabien Pazuki (University of Copenhagen)
Organizing Committee
Comité d’organisation
Yann Bugeaud (Université de Strasbourg)
Eric Gaudron (Université de Clermont-Ferrand)
Philipp Habegger (University of Basel)
Laura Demarco (Harvard University)
IMPORTANT WARNING: Scam / Phishing / SMiShing ! Note that ill-intentioned people may be trying to contact some of participants by email or phone to get money and personal details, by pretending to be part of the staff of our conference center (CIRM). CIRM and the organizers will NEVER contact you by phone on this issue and will NEVER ask you to pay for accommodation/ board / possible registration fee in advance. Any due payment will be taken onsite at CIRM during your stay.
Diophantine approximation is a branch of Number Theory that can be described as the study of the solvability of inequalities in integers, though this main theme of the subject is often substantially generalized. As an example, one can be interested in properties of rational points of algebraic varieties defined over an algebraic number field, or as another example, one may study convergence rates of orbits for arithmetic dynamical systems. The proposed workshop is concerned with a variety of problems of this kind, which have seen important progress during the last few years. A detailed description is given below, where five (not unrelated) topics are emphasized. Among the new developments, let us mention works on the ZilberPink conjecture and on unlikely intersections; important progress in metric number theory; and progress towards the Uniform Boundedness Conjecture in dynamical systems.
L’approximation diophantienne est une branche de la théorie des nombres qui, originellement, s’intéresse à la résolution d’inégalités en nombres entiers. Au fil du temps, la théorie s’est développée dans plusieurs directions. Par exemple, l’étude des points rationnels de variétés algébriques sur un corps de nombres ou des orbites de systèmes dynamiques arithmétiques est au cœur de la théorie actuelle. La conférence permettra d’aborder différents thèmes de l’approximation diophantienne contemporaine, en mettant l’accent sur les avancées les plus remarquables. Parmi les développements récents, citons les travaux sur la conjecture de Zilber-Pink et les intersections improbables, les progrès notables de la théorie métrique et les découvertes en direction de la conjecture de majoration uniforme pour les systèmes dynamiques.
SPEAKERS
to be announced