WORKSHOP
Fusibles Numbers Nombres fusibles 14 - 18 June 2021 |
Description
The set of fusible numbers is the least set of rationals such that 0 is fusible and for fusible x,y if |x-y|<1, then the number (x+y+1)/2 is fusible. There is a less formal description of this set as the set of all intervals of time measurable by a certain procedure using so-called fuses. Recently Erickson, Nivasch, and Xu have proved that the true statement "for any rational q there is the nearest to the right fusible number" is independent from first-order Peano arithmetic. For any monotone function f(x_1,..,x_n) we consider the set G_f that is the least set such that 0∈G_f and for any x_1,...,x_n∈G_f if f(x_1,...,x_n)>max(x_1,...,x_n), then f(x_1,...,x_n)∈G_f. The sets G_f could be regarded as generalizations of the set of fusible numbers that itself corresponds to the case of f(x,y)=(x+y+1)/2. We investigate the the order types of the sets G_f
Participants
Konstantin Bogdanov (Aix-Marseille Université)
Alexander Bufetov (Aix-Marseille Université)
Pierre Lazag (Aix-Marseille Université)
Juan Marshall (Aix-Marseille Université)
Gabriel Nivasch (Ariel University)
Fedor Pakhomov (Steklov Mathematical Institute of Russian Academy of Sciences Moscow)
Daria Tieplova (Université Paris-Est Marne-la-Vallée)
Konstantin Bogdanov (Aix-Marseille Université)
Alexander Bufetov (Aix-Marseille Université)
Pierre Lazag (Aix-Marseille Université)
Juan Marshall (Aix-Marseille Université)
Gabriel Nivasch (Ariel University)
Fedor Pakhomov (Steklov Mathematical Institute of Russian Academy of Sciences Moscow)
Daria Tieplova (Université Paris-Est Marne-la-Vallée)
(Marseille, France local time) https://www.thetimezoneconverter.com
Monday 14 June
14.00 Gabriel Nivasch (Ariel University)
Fusible numbers and Peano Arithmetic (abstract)
Monday 14 June
14.00 Gabriel Nivasch (Ariel University)
Fusible numbers and Peano Arithmetic (abstract)
Wednesday 16 June
15.15 Alexander Bufetov (CNRS & Institut de Mathématiques de Marseille & Steklov, IITP RAS)
Determinantal point processes: quasi-symmetries, minimality and interpolation (abstract)
15.15 Alexander Bufetov (CNRS & Institut de Mathématiques de Marseille & Steklov, IITP RAS)
Determinantal point processes: quasi-symmetries, minimality and interpolation (abstract)
SPONSOR
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement n° 647133 – IChaos).