Numerical Linear Algebra and Applications (NL2A)
October 24 – 28, 2016
Numerical Linear Algebra has been an active research area for several decades and continues to receive considerable attention. The last few years have seen the development of new techniques and robust algorithms that are designed for the solution of large-scale problems on modern computers.

This event focuses on two major applications of numerical linear algebra in large-scale computations. The first application is methods and techniques of linear algebra for image restoration (e.g. medical and astronomical imaging, image restoration, etc.). The problems to be solved are special inverse and ill-posed problems. The second focus is on matrix  problems such as preconditioning techniques for large linear systems, eigenvalue problems, matrix equations coming  from optimal control, model reduction techniques and other applications.

Researchers will present and discuss the state-of-the-art in numerical linear algebra and applications, with a particular emphasis on new advances in focus areas of the conference.

Scientific Committee

Jocelyne Erhel (Inria Rennes Bretagne Atlantique)
Khalide Jbilou (Université du Littoral Côte d’Opale) 
Gérard Meurant (previously at CEA Paris) 
Lothar Reichel (Kent State University) 
Carole Rosier (Université du Littoral Côte d’Opale)

Hassane Sadok (Université du Littoral Côte d’Opale)

Organizing Committee

Mohammed Bellalij (Université de Valenciennes)
Mustapha Hached (Université de Lille 1)
Khalide Jbilou (Université du Littoral Côte d’Opale)
Lothar Reichel (Kent State University)
Hassane Sadok (Université du Littoral Côte d’Opale)


  • Marc Baboulin (Université Paris-Sud)

Accelerating convergence in sparse least squares iterative solvers using LU factorization

  • Bernhard Beckermann (Université Lille1)

On the numerical rank of positive definite Hankel matrices

  • Michele Benzi (Emory University)

Generalized matrix functions: properties, algorithms, and applications

  • Dario Andrea Bini (University of Pisa)

Computing matrix functions of infinite quasi- Toeplitz matrices

  • Claude  Brezinski (Université Lille 1)

Anderson Acceleration and the Reduced Rank Extrapolation

  • Raymond  Chan (Chinese University of Hong Kong)

Point-spread function reconstruction in ground-based astronomy

  • Jean-Paul Chehab (Université Amiens)

Stabilized Time Marching Schemes for High Accurate Finite Differences Solutions of Nonlinear Parabolic Equations

  • Fernando De Teran (Universidad Carlos 3, Madrid)

Uniqueness of solution of systems of generalized Sylvester and  *Sylvester equations

  • Marco Donatelli (Università Dell’Insubria)

Spectral analysis and numerical methods for fractional diffusion equations

  • Froilán Dopico (Universidad Carlos 3, Madrid)

Strong linearizations of rational matrices: theory and explicit constructions

  • Vladimir Druskin (Schlumberger Doll Research)

Direct nonlinear imaging via data-driven discrete- time ROMs of large-scale wave propagation

  • Mohamed El Guide  (Université Cadi Ayyad)

Block Lanczos Algorithm for Digital Colour Images

  • Erhel Jocelyne (Inria)

Varying the s in s-step GMRES

  • Claudio Estatico (University of Genova, Dima)

Iterative regularization in variable exponent Lebesgue spaces

  • Caterina Fenu (University of Pisa)

Block Matrix Formulations for Evolving Networks

  • Silvia Gazzola (University of Bath)

Fast nonnegative least squares through flexible Krylov subspaces

  • Per Christian Hansen (Tu Denmark)

Column-Action Methods in CT

  • Ken Hayami (National Inst. of Informatics, Tokyo)

An Alternating Modulus Nonnegative Least- Squares Method for Nonnegative Matrix Factorization

  • Mohammed Heyouni  (Ensa, Al-Hoceima)

On applying the block Arnoldi process to the solution of a particular Sylvester-observer equation

  • Daniel Kressner (EPFL Lausanne)

Fast computation of the matrix exponential for a Toeplitz matrix

  • Julien Langou (University of Colorado Denver)

Bidiagonalization with Parallel Tiled Algorithms

  • Ren-Cang Li  (University of Texas at Arlington)

Doubling Algorithms, General Theory and Applications

  • Nicola Mastronardi (National Research Council of Italy)

Computing the Jordan structure of an eigenvalue

  • Gérard Meurant (Ex CEA Paris)

An optimal Q-OR Krylov subspace method for solving linear systems

  • Marilena  Mitrouli (University of Athens)

Computing the Least Common Multiple of Polynomial Sets

  • Aya Mourad (Université du Littoral Côte d’Opale)

Identification of hydraulic conductivity for salt- water intrusion problem in free aquifers

  • Silvia Noschese (Sapienza Università Di Roma)

Approximated structured pseudospectra

  • Miroslav Pranic (University of Banja Luka)

Gauss quadrature for quasi-definite linear functionals

  • Michela Redivo-Zaglia (Università Di Padova)

Applications of the simplified topological epsilon–algorithms

  • Lothar Reichel (Kent State University)

Generalized Krylov subspace methods for `lp-lq ‘ minimization

  • Leonardo Robol (Ku Leuven)

Fast and backward stable computation of the eigenvalues of matrix polynomials

  • Paraskevi Roupa (University of Athens)

Vector estimates for the action of matrix functions on vectors

  • Yousef Saad (University of Minnesota)

Divide and conquer algorithms and software for large Hermitian eigenvalue problems

  • Valeria Simoncini (Universita di Bologna)

Analysis of the rational Krylov subspace method for large-scale algebraic Riccati equations

  • Kirk Soodhalter (University of Linz)

Stagnation of block GMRES and its relationship to block FOM
Strakos Zdenek (Charles University In Prague)

  • Daniel Szyld (Temple University)

Block Krylov subspace methods for matrix functions

  • Duintjer Tebbens (Jurjen Institute Of Computer Science)

The roots of GMRES polynomials need not influence GMRES residual norms

  • Marc Van Barel (KU Leuven)

Tropical scaling of a Lagrange-type linearization for matrix polynomial eigenvalue problems

  • Paul Van Dooren (Université Catholique Louvain)

Block Kronecker Linearizations of Matrix Polynomials and their Backward Errors

  • Raf Vandebril  (KU Leuven)

A Framework for Structured Linearizations of Matrix Polynomials in Various Bases

  • Jianlin Xia (Purdue University)

A fast contour-integral eigensolver for non- Hermitian matrices and the approximation accuracy

  • Hongguo Xu (University of Kansas)

Weighted Golub-Kahan-Lanczos Algorithms

  • Mikhail  Zaslavsky (Schlumberger Doll Research)

Multi-scale S-fraction reduced-order models for massive wavefield simulations

  • Jorn Zimmerling (TU Delft)

Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation