
An introduction to conformal prediction

and distribution-free inference

CIRM tutorial (part 2)

Rina Foygel Barber (University of Chicago)

CIRM December 2024

http://rinafb.github.io/

http://rinafb.github.io/


Introduction



The conformal framework

Overview of Part 1:

• Conformal allows us to start with any algorithm,

& calibrate it to achieve (marginal) predictive coverage

• Tradeoff between statistical & computational efficiency:

Split CP, full CP, and CV-based versions

• Conformal + model-based methods ⇝ “best of both worlds”
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The conformal framework

Part 2 will examine extensions:

• Beyond marginal coverage — conditional coverage guarantees

• Beyond the i.i.d. assumption — the streaming-data setting
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Conditional coverage



Is marginal coverage enough?

Marginal coverage: P {Yn+1 ∈ C(Xn+1)} ≥ 1− α
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Is marginal coverage enough?

Training-conditional coverage: P
{
Yn+1 ∈ C(Xn+1)

∣∣ {(Xi ,Yi )}i∈[n]
}
≥ 1−α ?
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Is marginal coverage enough?

Test-conditional coverage: P {Yn+1 ∈ C(Xn+1) | Xn+1} ≥ 1−α ?
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Conditioning on the test data

The marginal coverage guarantee: P {Yn+1 ∈ C(Xn+1)}︸ ︷︷ ︸
averaged over training + test data

≥ 1− α

How can we avoid the following scenario?

• Coverage is 90% on average

• But, coverage for patients > 65 years old, is only 10%

• Or, coverage for patients with poor outcomes, is only 10%
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Hardness of test-conditional coverage

Let C be any procedure satisfying test-conditional coverage,

PP {Yn+1 ∈ C(Xn+1) | Xn+1} ≥ 1− α almost surely, for all P
↖

(X1, Y1), . . . , (Xn+1, Yn+1)
iid∼ P

Theorem1,2

Let P be any distribution with a marginal PX that is nonatomic.

↗
PP {X = x} = 0 for all x ∈ X

Then, if Y = R,

E [length(C(Xn+1)] = ∞.

1Vovk 2012, Conditional validity of inductive conformal predictors

2Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Hardness of test-conditional coverage

Let C be any procedure satisfying test-conditional coverage.

Key lemma3,4

Let P be any distribution with a marginal PX that is nonatomic.

Then for all (x , y) ∈ X × Y,

P {y ∈ C(x)} ≥ 1− α.

3Vovk 2012, Conditional validity of inductive conformal predictors

4Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Empirical vs theoretical

For all conformal methods so far (split CP/full CP/jack+/...)

• Distribution-free marginal coverage theory for any score s

• Distribution-free conditional coverage is impossible for any

score s (when X is nonatomic)

• Empirically, the choice of s has substantial impact on

conditional coverage

(a) Split: Avg. coverage 91.4%; Avg. length 2.91. (b) Local: Avg. coverage 91.7%; Avg. length 2.86.

(c) CQR: Avg. coverage 91.06%; Avg. length 1.99. (d) Length of prediction intervals.

Figure 2: Prediction intervals on simulated heteroscedastic data with outliers (see Figure 7 for a full
range display): (a) the standard split conformal method, (b) its locally adaptive variant, and (c) CQR
(our method). The length of the interval as a function of X is shown in (d). The target coverage rate
is 90%. The broken black curve in (a) and (b) is the pointwise prediction from the random forest
estimator. In (c), we show two curves, representing the lower and upper quantile regression estimates
based on random forests [22]. Observe how in this example the quantile regression estimates closely
match the adjusted estimates—the boundary of the blue region—obtained by conformalization.

incurred by this mistake. Similarly, if Yi is above the upper endpoint of the interval, Yi > q̂↵hi(Xi),
then Ei = |Yi � q̂↵hi(Xi)|. Finally, if Yi correctly belongs to the interval, q̂↵lo(Xi)  Yi  q̂↵hi(Xi),
then Ei is the larger of the two non-positive numbers q̂↵lo(Xi)� Yi and Yi � q̂↵hi(Xi) and so is itself
non-positive. The conformity score thus accounts for both undercoverage and overcoverage.

Finally, given new input data Xn+1, we construct the prediction interval for Yn+1 as

C(Xn+1) = [q̂↵lo(Xn+1)�Q1�↵(E, I2), q̂↵hi(Xn+1) + Q1�↵(E, I2)] , (10)

where

Q1�↵(E, I2) := (1� ↵)(1 + 1/|I2|)-th empirical quantile of {Ei : i 2 I2} (11)

conformalizes the plug-in prediction interval.

For ease of reference, the CQR procedure is summarized in Algorithm 1. We now prove that its
prediction intervals satisfy the marginal, distribution-free coverage guarantee (1).

Theorem 1. If (Xi, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction interval C(Xn+1)
constructed by the split CQR algorithm satisfies

P{Yn+1 2 C(Xn+1)} � 1� ↵.

5
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(figure from Lei et al 2018) (figure from Romano et al 2019)
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Empirical vs theoretical

Aim: to find a relaxation of test-conditional coverage that...

• Is interpretable & meaningful

• Is possible to achieve distribution-free (& without high

computational cost)

• Does not lead to overly conservative methods in the

continuous case
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Approximate test-conditional coverage

(1− α, δ)-conditional coverage5

For any distribution P & any X0 ⊆ X with PX (X0) ≥ δ,

PP {Yn+1 ∈ C(Xn+1) | Xn+1 ∈ X0} ≥ 1− α.

Intuition: no large regions in feature space with low coverage

Trivial solutions, e.g.,

• Any method with 1− αδ marginal coverage (e.g., split CP)

Theorem—any C satisfying (1− α, δ)-conditional coverage, returns

intervals at least as large as a trivial solution

5B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
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Approximate test-conditional coverage

(1− α)-marginal

coverage

(1− α)-conditional

coverage

(1− α, δ)-approx.

conditional

coverage

too weak too strong
????
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Bin-conditional coverage

A possible relaxation — coverage conditional on bins:6,7,8

Partition X = X1 ∪ · · · ∪ XK ,

& require P {Yn+1 ∈ C(Xn+1) | Xn+1 ∈ Xk} ≥ 1− α for each k

• For each k , data points {(Xi ,Yi ) : Xi ∈ Xk} are exchangeable

• ⇝ can run CP separately for each bin k ,

to guarantee coverage conditional on Xn+1 ∈ Xk

6Vovk 2012, Conditional validity of inductive conformal predictors

7Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

8Vovk et al 2005, Algorithmic Learning in a Random World
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Bin-conditional coverage

A best-of-both-worlds guarantee:9

• The distribution-free guarantee:

P {Yn+1 ∈ C(Xn+1) | Xn+1 ∈ Xk} ≥ 1− α, ∀k

• If bins have vanishing diameter, + additional assumptions

(e.g., continuity of x 7→ (distrib. of Y | X = x)):

P {Yn+1 ∈ C(Xn+1) | Xn+1 = x} → 1− α, ∀x

9Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Localized conformal prediction

A different relaxation — localized guarantees, i.e., conditions of

the type

PP {Yn+1 ∈ C(Xn+1) | Xn+1 ≈ x} ⪆ 1− α

e.g., coverage conditional on Xn+1 ∈ B(x , rn), where rn → 0
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Localized conformal prediction

A possible approach?

To guarantee ≈ coverage over balls Xn+1 ∈ B(x , rn)...
compute q̂ using only calibration points ∥Xi − Xn+1∥ ≤ rn?

C(Xn+1) =
{
y ∈ Y : s(Xn+1, y) ≤ Quantile(1−α)(1+1/|In|)

(
{Si}i∈In

)}
where

In = {i : n0 < i ≤ n, ∥Xi − Xn+1∥ ≤ rn}
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Localized conformal prediction

What we expect:

• Marginal coverage (like any conformal method)

• & approx. conditional coverage (maybe need smoothness?)

What we see (in the worst case):10

• Even marginal coverage can fail!

10Guan 2023, Localized conformal prediction: A generalized inference framework for conformal prediction
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Localized conformal prediction

The LCP method11

—with recalibration step

1 Construct score function s using pretraining data Z1, . . . ,Zn0

2 Let H : X × X → R+ be a kernel, and define weights

wi =
H(Xn+1,Xi )∑n+1

j=n0+1H(Xn+1,Xj)

3 Compute weighted quantile q̂α at level 1− α

4 For test point n + 1 return prediction interval

C(Xn+1) = {y ∈ Y : s(Xn+1, y) ≤ q̂α }

///////
1− α̃(y)

11Guan 2023, Localized conformal prediction: A generalized inference framework for conformal prediction
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Localized conformal prediction

Examples of the kernel H:

• Box kernel: H(x , x ′) = 1∥x−x ′∥≤hn

• Exponential kernel: H(x , x ′) = e−∥x−x ′∥/hn

• Gaussian kernel: H(x , x ′) = e−∥x−x ′∥2/2h2n
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Randomly-localized conformal prediction

RLCP12

1 Construct score function s using pretraining data Z1, . . . ,Zn0

2 Sample X̃n+1 ∼ H(Xn+1, ·)
3 Define weights

w̃i =
H(Xi , X̃n+1)∑n+1

j=n0+1H(Xj , X̃n+1)

4 Compute weighted quantile q̂ at level 1− α

5 For test point n + 1 return prediction interval

C(Xn+1) = {y ∈ Y : s(Xn+1, y) ≤ q̂}
12Hore & B. 2023 Conformal prediction with local weights: randomization enables robust guarantees
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Theoretical guarantees for RLCP

Theorem: marginal coverage for RLCP

For the RLCP method,

P {Yn+1 ∈ C(Xn+1)} ≥ 1− α

The marginal coverage theorem follows from:

Theorem: key property of RLCP

For the RLCP method,

P
{
Yn+1 ∈ C(Xn+1)

∣∣∣ X̃n+1

}
≥ 1− α
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Theoretical guarantees for RLCP

Returning to the goal of ≈ test-conditional coverage...

Theorem: asymptotic local coverage for RLCP

For RLCP with H(x , x ′) ∝ 1∥x−x ′∥≤hn , if hn, rn → 0, hn/rn → 0,

P {Yn+1 ∈ C(Xn+1) | Xn+1 ∈ B(x , rn)} ≥ 1− α− o(1)

as long as PX has a density which is continuous and positive at x
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Coverage relative to a class of functions

Another relaxation — require coverage with respect to a class of

test functions13

For a class of functions F = {f : X → [0,∞)}, require

E
[
f (Xn+1) ·

(
1Yn+1∈C(Xn+1) − (1− α)

)]
≥ 0 for all f ∈ F

• Test-conditional coverage ↔ all measurable functions

• Marginal coverage ↔ one function, f (x) ≡ 1

• Bin-conditional coverage ↔ functions f (x) = 1x∈Xk

13Gibbs et al 2023, Conformal Prediction With Conditional Guarantees
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Conformal prediction in the online setting



Prediction in a streaming setting

Conformal prediction is often studied for a single test point Zn+1.

In practice, we want to predict “in real time”:

Z1 Z2 Z3 . . . Zt−1 Zt︸︷︷︸
predict Y

Zt+1 . . .

Z1 Z2 Z3 . . . Zt−1 Zt Zt+1︸︷︷︸
predict Y

Zt+2 . . .

Z1 Z2 Z3 . . . Zt−1 Zt Zt+1 Zt+2︸︷︷︸
predict Y

Zt+3 . . .

...

↶
↶

↶
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Prediction in a streaming setting

Ct = the prediction interval constructed for prediction at time t

Conformal method guarantee for each t:

P {Yt ∈ Ct(Xt)} ≥ 1− α

Is this sufficient for practical purposes?

A high-dependence scenario... what if:

• with probability 1− α, for all t, Yt ∈ Ct(Xt)

• with probability α, for all t, Yt ̸∈ Ct(Xt)
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Conformal prediction as a hypothesis test

Recall construction of full conformal prediction:

• Fit model to training+test data

µ̂
y = A((X1, Y1), . . . , (Xn, Yn), (Xn+1, y))

• Compute residuals

S
y
i = |Yi − µ̂

y (Xi )|, i = 1, . . . , n, S
y
n+1 = |y − µ̂

y (Xn+1)

• Check if S
y
n+1 ≤ Quantile(1−α)(1+1/n)(S

y
1 , . . . , S

y
n )

y ⇝ {Yes,No}

↙ ↘
if Yes: add y to C(Xn+1) if No: discard y

Test value y ∈ Y
↘

Reinterpret this as a hypothesis test:

H0,y : Data points (X1,Y1), . . . , (Xn,Yn), (Xn+1, y) are exchangeable
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Conformal prediction as a hypothesis test

Full conformal prediction (p-value version)14

For each y ∈ Y define a conformal p-value:

p(y) =
1 +

∑n
i=1 1{S

y
i ≥ Sy

n+1}
n + 1

where

Sy
i = sy (Xi ,Yi ), i = 1, . . . , n, Sy

n+1 = sy (Xn+1, y),

for fitted score function sy = A
(
(X1,Y1), . . . , (Xn,Yn), (Xn+1, y)

)
Then define prediction interval: C(Xn+1) = {y ∈ Y : p(y) > α}

14Vovk et al 2005, Algorithmic Learning in a Random World
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The conformal p-value

The marginal coverage guarantee (under exchangeability):

P {Yn+1 ̸∈ C(Xn+1)} = P {p(Yn+1 ≤ α} ≤ α︸ ︷︷ ︸
i.e., p(Yn+1) is a valid p-value
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Conformal p-values are independent

Theorem: conformal p-values in streaming time15

Assume scores {st(Zi )}i=1,...,t are distinct at each t (no ties).

Then:

• For each t, pt ∼ Uniform{1
t ,

2
t , . . . , 1}

• And, p1, p2, . . . are mutually independent

Implication:∑t
i=1 1{Yi ̸∈ Ci (Xi )} =

∑t
i=1 1{pi ≤ α} ≤ Binomial(t, α)

(& this also holds if ties allowed)

⇝ the high-dependence scenario cannot occur
15Vovk et al 2003, Testing Exchangeability On-Line
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The online setting: arbitrary data streams



Removing the exchangeability assumption

The conformal framework allows us to use any model,

while ensuring validity with respect to any distribution....

But, we assume the data is i.i.d. (or exchangeable)—

does not allow for drift, dependence, changepoints, ....
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(figure shows Elec data set16 — tracking electricity demand in Australia)

16Harries 1999, Splice-2 comparative evaluation: Electricity pricing
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Removing the exchangeability assumption

Without assuming exchangeability (or a bounded/known violation)

impossible to guarantee coverage at a fixed time t:

If we observe
(
(X1,Y1), . . . , (Xt−1,Yt−1),Xt

)
, the i.i.d. setting

(X1,Y1), . . . , (Xt ,Yt)
iid∼ P

is indistinguishable from

(X1,Y1), . . . , (Xt−1,Yt−1)
iid∼ P, (Xt ,Yt) ∼ PX × QY |X
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Removing the exchangeability assumption

To make guarantees possible—relax the notion of valid coverage:

Coverage holds

at every fixed time t
−→ Coverage holds

on average over all times t

• If a changepoint at time t causes the method to lose coverage,

can compensate by being more conservative at

later times t ′ > t to maintain average coverage

32/50



Adaptive conformal inference

Method: adaptive conformal inference17,18

At each time t, via conformal or some other method, construct

1 A score function st(x , y)

2 Estimated quantiles q̂t(1− a) for st(X ,Y ), for a ∈ [0, 1]

To allow values a ̸∈ [0, 1] define

q̂t(1− a) = +∞, a < 0

q̂t(1− a) = −∞, a > 1

17Gibbs & Candès 2021, Adaptive conformal inference under distribution shift

18Gibbs & Candès 2022, Conformal Inference for Online Prediction with Arbitrary Distribution Shifts
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Adaptive conformal inference

Adaptive conformal inference19,20

1 Initialize at some α1 ∈ [0, 1], and return

C1(X1) = {y ∈ Y : s1(X1, y) ≤ q̂1(1− α1)}

2 For each t ≥ 1, update

αt+1 = αt − η(1{Yt ̸∈ Ct(Xt)} − α)

and return

Ct+1(Xt+1) = {y ∈ Y : st+1(Xt+1, y) ≤ q̂t+1(1− αt+1)}

19Gibbs & Candès 2021, Adaptive conformal inference under distribution shift

20Gibbs & Candès 2022, Conformal Inference for Online Prediction with Arbitrary Distribution Shifts
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Adaptive conformal inference

Adaptive conformal inference19,20

1 Initialize at some α1 ∈ [0, 1], and return

C1(X1) = {y ∈ Y : s1(X1, y) ≤ q̂1(1− α1)}

2 For each t ≥ 1, update

αt+1 = αt − η(1{Yt ̸∈ Ct(Xt)} − α)

and return

Ct+1(Xt+1) = {y ∈ Y : st+1(Xt+1, y) ≤ q̂t+1(1− αt+1)}

19Gibbs & Candès 2021, Adaptive conformal inference under distribution shift

20Gibbs & Candès 2022, Conformal Inference for Online Prediction with Arbitrary Distribution Shifts
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Adaptive conformal inference

How ACI maintains coverage over time—intuition:

• If we undercover over a long stretch of time,

αt will decrease to compensate

• If we overcover over a long stretch of time,

αt will increase to compensate
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Adaptive conformal inference

Lemma: bounded thresholds

For all t ≥ 1,

−η(1− α) ≤ αt ≤ 1 + ηα
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Adaptive conformal inference

Theorem: regret bound21

For any initial threshold α1 ∈ [0, 1],∣∣∣∣∣ 1T
T∑
t=1

1{Yt ̸∈ Ct(Xt)} − α

∣∣∣∣∣ ≤ max{α1, 1− α1}+ η

ηT

This is a deterministic result:

• Data may have any distribution (or may be nonrandom)

• Score functions st may be fixed or arbitrarily data-dependent

21Gibbs & Candès 2021, Adaptive conformal inference under distribution shift
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Adaptive conformal inference

Proof of theorem:

By def. of update rule,

αT+1 = α1 −
T∑
t=1

η(1{Yt ̸∈ Ct(Xt)} − α)

Rearranging terms,

T∑
t=1

1{Yt ̸∈ Ct(Xt)} = Tα+ η−1 · (αT+1 − α1)︸ ︷︷ ︸
bounded by Lemma
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Adaptive conformal inference

The update can be on any tuning parameter—can update the

thresholds directly

Quantile tracker22

1 Assume all score functions return output in [0,B]

2 Initialize at some q1 ∈ [0,B], and return

C1(X1) = {y ∈ Y : s1(X1, y) ≤ q1}

3 For each t ≥ 1, update

qt+1 = qt + η(1{Yt ̸∈ Ct(Xt)} − α)

and return

Ct+1(Xt+1) = {y ∈ Y : st+1(Xt+1, y) ≤ qt+1}
22Angelopoulos et al 2023, Conformal PID Control for Time Series Prediction
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Reconsidering a constant step size

What is the effect of using a constant step size η?

• Constant η > 0 ensures rapid corrections for undercoverage

• However, also overcorrects for errors that occur simply by

random chance
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Reconsidering a constant step size

Theorem: variability with a constant step size23

Assume (Xt ,Yt)
iid∼ P for any P, and scores are trained online︸ ︷︷ ︸

st may depend on (X1, Y1), . . . , (Xt−1, Yt−1)

.

If scores st(Xt ,Yt) are continuous & α ∈ Q,

lim inf
T→∞

1

T

T∑
t=1

1αt≤0︸ ︷︷ ︸
how often Ct(Xt) = Y

> 0 and lim inf
T→∞

1

T

T∑
t=1

1αt≥1︸ ︷︷ ︸
how often Ct(Xt) = ∅

> 0

23Angelopoulos, B., & Bates 2024, Online conformal with decaying step size
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Reconsidering a constant step size

Illustration: the oracle setting

η = 0.05 η = 0.5
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Reconsidering a constant step size

Online conformal inference with time-varying step size24

1 Initialize at some q1 ∈ [0,B], and return

C1(X1) = {y ∈ Y : s1(X1, y) ≤ q1}

2 For each t ≥ 1, update

qt+1 = qt + ηt · (1{Yt ̸∈ Ct(Xt)} − α)

and return

Ct+1(Xt+1) = {y ∈ Y : st+1(Xt+1, y) ≤ qt+1}

24Angelopoulos, B., & Bates 2024, Online conformal with decaying step size
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Experiments

Elec data set25 (time series)

• Prediction interval constructed with residual score |Yt − Ŷt |
• Prediction Ŷt given by average of data from 24–48 hours ago

0 10000 20000
time t

0.0

0.1

0.2

0.3

0.4

0.5

q t

0 10000 20000
time t

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

t(q
t)

0 10000 20000
time t

0.75

0.80

0.85

0.90

0.95

1.00

lo
ng

-r
un

 c
ov

er
ag

e
1000 10000 20000

time t

0.80

0.85

0.90

0.95

1.00

ro
lli

ng
 c

ov
er

ag
e

fixed t

decaying t

oracle
1

↗
rolling average (window = 1000)

25Harries 1999, Splice-2 comparative evaluation: Electricity pricing
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Assumption-free theory

Theorem: regret bound (for decreasing ηt)

Let s1, s2, · · · : X × Y → [0,B], and q1 ∈ [0,B].

If η1 ≥ η2 ≥ · · · > 0, then∣∣∣∣∣ 1T
T∑
t=1

1{Yt ̸∈ Ct(Xt)} − α

∣∣∣∣∣ ≤ B + η1
ηTT

• Allowing ηt to increase if needed can accelerate adaptivity to

changes (theory extends to this case)
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Theory for i.i.d. data

The regret bounds hold for

• any data stream (random or deterministic)

• any sequence of bounded st ’s (random or deterministic)

In the i.i.d. setting, can give stronger results:

Theorem: the i.i.d. data setting

Let (Xt ,Yt)
iid∼ P for any P, st ’s trained online, and∑

t≥1

ηt = ∞,
∑
t≥1

η2t < ∞

Then the following holds almost surely:

If st
d→ s∗ then qt → Quantile1−α(s∗(X ,Y ))︸ ︷︷ ︸

(assuming this quantile is unique)
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Theory for i.i.d. data

Interpretation—ensure robustness without hurting performance

model-based method:

parametric or

nonparametric

 −→
conformal prediction:

distribution-free, but

assumes exchangeability

 −→
adaptive conformal:

removes exchangeability

assumption
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Summary



Summary

Part 1 — the conformal prediction framework:

• Distribution-free predictive coverage under exchangeability

• Pairs with any existing model / algorithm

Part 2 — extensions of the conformal framework to handle:

• Relaxations of conditional coverage guarantees

• Distribution shift

• The online setting (i.i.d. or with distribution drift)
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Summary

Many additional extensions & topics in the literature, including:

• Other notions of conditional coverage (e.g., training-conditional)26

• Other notions of risk (beyond coverage/non-coverage)27

• Weighted conformal prediction to handle distribution shift28 (applications

to causal inference29, survival analysis30, ....)

• Relaxations or extensions of exchangeability (e.g., hierarchical sampling

structures)31

• Distribution-free calibration32

26Vovk 2012, Conditional validity of inductive conformal predictors; Bian & B. 2021, Training-conditional coverage

for distribution-free predictive inference; Liang & B. 2023, Algorithmic stability implies training-conditional

coverage for distribution-free prediction methods

27Angelopolous et al 2022, Conformal Risk Control

28Tibshirani, B., Candès, Ramdas 2019, Conformal Prediction Under Covariate Shift

29Lei & Candès 2021, Conformal inference of counterfactuals and individual treatment effects

30Candès, Lei, Ren 2021, Conformalized survival analysis; Gui, Hore, Ren, & B. 2022, Conformalized survival

analysis with adaptive cutoffs

31B., Candès, Ramdas, & Tibshirani 2023, Conformal prediction beyond exchangeability; Prinster et al 2024

Conformal Validity Guarantees Exist for Any Data Distribution; Lee, B., & Willett 2023 Distribution-free inference

with hierarchical data

32Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration 49/50



Summary

Books & additional resources:

• Algorithmic Learning in a Random World, Vovk, Gammerman, Shafer

2005

• A Gentle Introduction to Conformal Prediction and Distribution-Free

Uncertainty Quantification, Angelopoulos & Bates 2021

• Theoretical Foundations of Conformal Prediction, Angelopoulos, B.,

Bates 2024+

• Lecture notes by Ryan Tibshirani: https://www.stat.berkeley.edu/

~ryantibs/statlearn-s23/lectures/conformal.pdf

• Tutorial videos & slides on my website:

https://rinafb.github.io/talks/

Thank you!
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