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Introduction



Regression & prediction

Supervised learning setting:

Training data (X1,Y1), (X2,Y2), . . . , (Xn,Yn) ∈ X × Y

Goals:

• Inference on the regression — model distribution of Y given X

• Predictive inference — predict value of Y given X

for test points (Xn+1,Yn+1), (Xn+2,Yn+2), . . .
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Regression & prediction — classical approach

• We assume a parametric model on (X ,Y ) or on Y | X

e.g., for linear regression, Y = X⊤β +N (0, σ2)

• We perform estimation & inference on the parameters....

e.g., for linear regression, distribution of β̂ and σ̂2

• ....& then we can provide prediction intervals:

e.g., for linear regression, Yn+1 ∈ X⊤n+1β̂ ± .......

2/65



Regression & prediction — classical approach

• We assume a parametric model on (X ,Y ) or on Y | X

e.g., for linear regression, Y = X⊤β +N (0, σ2)

• We perform estimation & inference on the parameters....

e.g., for linear regression, distribution of β̂ and σ̂2

• ....& then we can provide prediction intervals:

e.g., for linear regression, Yn+1 ∈ X⊤n+1β̂ ± .......

2/65



Regression & prediction — nonparametric approach

• We allow a nonparametric model for (X ,Y ) or Y | X ,

with assumptions/constraints

e.g., assume E [Y | X ] is smooth

• We perform estimation & inference on the model....

e.g., µ̂(x) = estimate of E [Y | X = x ], via a Gaussian kernel

• ....& then we can provide prediction intervals:

e.g., Yn+1 ∈ µ̂(Xn+1)± .......
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Regression & prediction — ML approach

• Train an overparametrized model for Y | X

e.g., train a neural net on {(Xi ,Yi )}

• Provide predictions for new feature vectors

e.g., Ŷn+i = neural net’s prediction for feature Xn+i

• Use a data-driven strategy for uncertainty quantification

e.g., holdout data / cross-validation / bootstrapping / etc
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Regression & prediction — challenges

What can go wrong?

• For the parametric approach — our model may be wrong

• For the nonparametric approach — our assumptions (e.g.,

smoothness) may not hold

• For the ML approach — is data-driven inference guaranteed

to give valid answers?
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Regression & prediction — challenges

Our choices:

• Rely on assumptions being correct

• Or, test empirically whether our assumptions hold

• Or, use inference methods that don’t rely on assumptions

(or, only rely on weaker assumptions)
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Regression & prediction — data-driven predictive inference

Setting:

• Features X ∈ X , response Y ∈ R (or Y ∈ Y)

• Available training data (X1,Y1), . . . , (Xn,Yn) ⇝ fit model µ̂

• Goal: given Xn+1,Xn+2, . . . , predict Yn+1,Yn+2, . . .

Prediction? or predictive inference?

Ŷn+i = µ̂(Xn+i ) Yn+i ∈ µ̂(Xn+i )± (margin of error)︸ ︷︷ ︸
how to calculate?
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Using the training set for inference

Using the training loss:

If fitted model µ̂ overfits to training data, generally

|Yn+i − µ̂(Xn+i )|︸ ︷︷ ︸
test error

≫ 1

n

n∑
i=1

|Yi − µ̂(Xi )|︸ ︷︷ ︸
avg. training error

even if training & test data are from the same distribution
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Regression & prediction — data-driven predictive inference

Simulation: suppose we construct prediction intervals as

C(Xn+i ) = µ̂(Xn+i )±Quantile1−α(|Y1 − µ̂(X1)|, . . . , |Yn − µ̂(Xn)|︸ ︷︷ ︸
residuals on training data
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Using a holdout set for inference

To avoid overfitting — use a holdout set (“calibration set”)

• Split the training data, n = n0 + n1

• Fit model µ̂ on pretraining set {(Xi ,Yi )}1≤i≤n0
• Compute residuals on calibration set, {|Yi − µ̂(Xi )|}n0<i≤n

• Prediction interval:

C(Xn+i ) = µ̂(Xn+i )± Quantile1−α
(
{|Yi − µ̂(Xi )|}n0<i≤n

)

↗ ↖
fitted on pretraining data computed on calibration data
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Using a holdout set for inference

Simulation:
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Using a holdout set for inference

• The naive method fits a more accurate µ̂,

but the margin of error is too small due to overfitting

• A holdout set method fits a less accurate µ̂,

but the margin of error is correctly calibrated

• Can we use cross-validation (CV) to get the best of both?

Will return to this!
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Distribution-free prediction: aims

The goal of distribution-free inference is to provide guarantees

that are valid universally over all data distributions.

For the problem of predictive inference...

• Can we construct a prediction interval C(Xn+i ) ⊆ Y such that

P {Yn+i ∈ C(Xn+i )} ≥ 1− α ?

• Want to avoid overly conservative solutions (C(Xn+1) = Y)

• Want to be able to use any regression method to construct C
(classical or ML methods)
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Introduction to exchangeability

For the rest of this talk: let Zi = (Xi ,Yi ) ∈ X × Y

The i.i.d. data setting

Assume Z1, . . . ,Zn︸ ︷︷ ︸
training

,Zn+1,Zn+2, . . .︸ ︷︷ ︸
test

are i.i.d. from some distrib. P

Can we call this “distribution-free”?

• No assumptions on P (e.g., P does not need to be smooth)

• But, this does not allow for dependence across time /

distribution shift / etc

• We will return to these settings later
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Introduction to exchangeability

The exchangeable data setting

Assume that the data points

Z1, . . . ,Zn︸ ︷︷ ︸
training

,Zn+1,Zn+2, . . .︸ ︷︷ ︸
test

are exchangeable, i.e., (Z1, . . . ,Zm)
d
= (Zσ(1), . . . ,Zσ(m)) for

every m and every permutation σ.

• The i.i.d. data setting is a special case

• Conditionally i.i.d. data is another special case

• Note: finite sequences can be exchangeable but not i.i.d.

(de Finetti’s theorem does not apply)
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Conformal prediction: background

Background on the conformal prediction (CP) framework:

key idea = statistical inference via exchangeability of the data

Learning by Transduction 

Abstract 

A. Gammerman, V. Vovk, V. Vapnik 
Department of Computer Science 

Royal Holloway, University of London 
Egham, Surrey TW20 OEX, UK 

{alex , vovk , vladimir}@dcs . rhbnc . ac . uk 

We describe a method for predicting a clas- 
sification of an object given classifications of 
the objects in the training set, assuming that 
the pairs object/classification are generated 
by an i.i.d. process from a continuous proba- 
bility distribution. Our method is a modifica- 
tion of Vapnik's support-vector machine; its 
main novelty is that it gives not only the pre- 
diction itself but also a practicable measure of 
the evidence found in support of that predic- 
tion. We also describe a procedure for assign- 
ing degrees of confidence to predictions made 
by the support vector machine. Some experi- 
mental results are presented, and possible ex- 
tensions of the algorithms are discussed. 

1 THEPROBLEM 

Suppose labeled points (xi, yi) (i = 1,2, . . .), where 
xi E Rn (our objects are specified by n real-valued 
attributes) and yi E {-1,1}, are generated indepen- 
dently from an unknown (but the same for all points) 
probability distribution. We are given 1 points xi, 
i = 1, . . . , I, together with their classifications yi E 
{-1,1}, and an (I + 1)th unclassified point xl+l. How 
should it be classified? (This is a problem of transduc- 
tion, in the sense that we are interested in the classifi- 
cation of a particular example rather than in a general 
rule for classifying future examples; for further discus- 
sion of transduction, see Section 6.) 

A natural and well-known approach is Vapnik's [7] 
method of support vector (SV) machines. The SV 
method works very well in practice, but unfortunately 
no practicable estimates of the accuracy of its predic- 
tions are known if our only information is 1 classified 
points and one unclassified point. The most relevant, 
in this context, theorem from [7] (Theorem 5.2) says 

that the probability of misclassifying the (l+l)th point 
is at  most 

E(number of support vectors among XI ,.. . ,x l+~)  
1 + 1  , 

(1) 
where the points xl ,. . . ,xl+l are generated indepen- 
dently from the underlying distribution P; support 
vectors are defined in Section 5 below. To apply this 
theorem we need to know the probability distribution 
P, while the only information we do know is 

Clearly this is not sufficient to estimate the expecta- 
tion in (1). 

Remark 1 Dawid [2] distinguishes between nominal 
and stochastic inference; in our present context nomi- 
nal inference is the prediction itself and stochastic in- 
ference is some assertion about the accuracy of this 
prediction. To use this terminology, the SV method 
provides only nominal but no stochastic inference. (Of 
course, since the SV method is being actively devel- 
oped, the situation is likely to change in the future.) 

2 PREDICTING WITH 
CONFIDENCE 

Now we briefly describe, following [4], our transduc- 
tive algorithm, putting off its substantiation until Sec- 
tion 5. We consider two pictures in the space Rn: 
both pictures contain (1 + 1) points (the 1 points in the 
training set and one point to be classified), the points 
in the training set are classified as before, and the only 
difference between the pictures is the classification of 
the (I + 1)th point; in the -1-picture that point is clas- 
sified as -1 and in the 1-picture it is classified as 1. It 
can be proven that the (If 1)th point will be a support 
vector in at least one of the pictures. Let SV(1) (resp. 
SV(-1)) be the set of indices of support vectors in the 
1-picture (resp. -1-picture); we let # A  stand for the 
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ABSTRACT
We develop a general framework for distribution-free predictive inference in regression, using conformal
inference. The proposed methodology allows for the construction of a prediction band for the response
variable using any estimator of the regression function. The resulting prediction band preserves the consis-
tency properties of the original estimator under standard assumptions, while guaranteeing !nite-sample
marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically
and theoretically, the two major variants of our conformal framework: full conformal inference and split
conformal inference, along with a related jackknife method. These methods o"er di"erent tradeo"s
between statistical accuracy (length of resulting prediction intervals) and computational e#ciency. As
extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out
conformal inference, which has essentially the same computational e#ciency as split conformal inference.
We also describe an extension of our procedures for producing prediction bands with locally varying
length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable
importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package
conformalInference that implements all of the proposals we have introduced. In the spirit of
reproducibility, all of our empirical results can also be easily (re)generated using this package.

1. Introduction

Consider iid regression data

Z1, . . . ,Zn ∼ P,

where each Zi = (Xi,Yi) is a random variable in Rd × R, com-
prised of a response variable Yi and a d-dimensional vector of
features (or predictors, or covariates) Xi = (Xi(1), . . . ,Xi(d)).
The feature dimension dmay be large relative to the sample size
n (in an asymptotic model, d is allowed to increase with n). Let

µ(x) = E(Y |X = x), x ∈ Rd

denote the regression function. We are interested in predicting
a new response Yn+1 from a new feature value Xn+1, with no
assumptions on µ and P. Formally, given a nominal miscover-
age level α ∈ (0, 1), we seek to constructing a prediction band
C ⊆ Rd × R based on Z1, . . . ,Zn with the property that

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1 − α, (1)

where the probability is taken over the n + 1 iid draws
Z1, . . . ,Zn,Zn+1 ∼ P, and for a point x ∈ Rd we denote
C(x) = {y ∈ R : (x, y) ∈ C}. The main goal of this article is
to construct prediction bands as in (1) that have !nite-sample
(nonasymptotic) validity, without assumptions on P. A second
goal is to construct model-free inferential statements about the
importance of each covariate in the prediction model for Yn+1
given Xn+1.

Our leading example is high-dimensional regression, where
d ' n and a linear function is used to approximate µ (but the

CONTACT Jing Lei jinglei@andrew.cmu.edu Department of Statistics, Carnegie Mellon University,  Baker Hall, Pittsburgh, PA .
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

linearmodel is not necessarily assumed to be correct). Common
approaches in this setting include greedy methods like forward
stepwise regression, and "1-based methods like the lasso. There
is an enormous amount of work dedicated to studying various
properties of these methods, but to our knowledge, there is
very little work on prediction sets. Our framework provides
proper prediction sets for these methods, and for essentially any
high-dimensional regression method. It also covers classical
linear regression and nonparametric regression techniques.
The basis of our framework is conformal prediction, a method
invented by Vovk, Gammerman, and Shafer (2005).

1.1. RelatedWork

Conformal inference. The conformal prediction framework
was originally proposed as a sequential approach for forming
prediction intervals, by Vovk, Gammerman, and Shafer (2005)
and Vovk, Nouretdinov, and Gammerman (2009). The basic
idea is simple. Keeping the regression setting introduced above
and given a new independent draw (Xn+1,Yn+1) from P, to
decide if a value y is to be included in C(Xn+1), we consider
testing the null hypothesis that Yn+1 = y and construct a valid
p-value based on the empirical quantiles of the augmented
sample (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1) with Yn+1 = y
(see Section 2 for details). The data augmentation step makes
the procedure immune to over!tting, so that the resulting
prediction band always has valid average coverage as in (1).
Conformal inference has also been studied as a batch (rather

©  American Statistical Association

Gammerman, Vovk, Vapnik Vovk, Gammerman, Shafer Lei, G’Sell, Rinaldo,

UAI 1998 2005 — see alrw.net Tibshirani, Wasserman

JASA 2018
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Conformal prediction: background

Recent developments — software packages & user-friendly tutorials

& a new theory textbook (75% on arXiv, forthcoming from CUP)

Theoretical Foundations of Conformal Prediction

Anastasios N. Angelopoulos1, Rina Foygel Barber2, Stephen Bates3

1Department of Electrical Engineering and Computer Science, University of California at Berkeley
2Department of Statistics, University of Chicago
3Department of Electrical Engineering and Computer Science, Massachussetts Institute of Technology
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Conformal prediction: background

Recent developments — successful applications in biological

sciences, machine learning, & many more domains
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Split conformal prediction

The split conformal prediction method

1 Using pretraining data Z1, . . . ,Zn0 ,

construct fitted model µ̂ using any regression algorithm:

µ̂ = A
(
Z1, . . . ,Zn0

)
2 Compute quantile q̂ of calibration set residuals:

q̂ = Quantile(1−α)(1+1/n1)

(
{|Yi − µ̂(Xi )|}n0<i≤n

)
3 For test point n + 1 return prediction interval

C(Xn+1) = µ̂(Xn+1)± q̂
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Split conformal prediction

Theorem1

If Z1, . . . ,Zn+1 are exchangeable, then split conformal satisfies:

P {Yn+1 ∈ C(Xn+1)} ≥ 1− α

Proof:

Define Si = |Yi − µ̂(Xi )| for i = n0 + 1, . . . , n︸ ︷︷ ︸
calibration

, n + 1︸ ︷︷ ︸
test

Yn+1 ∈ C(Xn+1) ⇐⇒ Sn+1 ≤ Quantile(1−α)(1+1/n1)(Sn0+1, . . . ,Sn)

⇐⇒ Sn+1 ≤ Quantile1−α(Sn0+1, . . . ,Sn,Sn+1)

1Vovk et al 2005, Algorithmic Learning in a Random World 20/65
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Split conformal prediction

Exchangeability for holdout set methods

If µ̂ = A(Z1, . . . ,Zn0), & the data points are exchangeable, then

|Yn0+1 − µ̂(Xn0+1)|, . . . , |Yn − µ̂(Xn)|︸ ︷︷ ︸
calibration residuals

, |Yn+1 − µ̂(Xn+1)|︸ ︷︷ ︸
test residual

are exchangeable.

=⇒ P {Sn+1 ≤ Quantile1−α(Sn0+1, . . . ,Sn,Sn+1)} ≥ 1− α
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The conformal score

Due to the construction of the split conformal method,

C(Xn+1) has the same width regardless of the value of Xn+1

(figure from Lei et al 2018)

Why?

• C(Xn+1) =
[
µ̂(Xn+1)± q̂

]
= {y ∈ R : |y − µ̂(Xn+1)| ≤ q̂}

• Equivalently: we are using |y − µ̂(Xn+1)| as a score

to determine whether y is contained in C(Xn+1) or not

22/65
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The conformal score

The split conformal prediction method2 (general score)

1 Using pretraining data Z1, . . . ,Zn0 ,

construct score function s : X × Y → R using any algorithm

2 Compute quantile q̂ of calibration set scores:

q̂ = Quantile(1−α)(1+1/n1)

(
Sn0+1, . . . ,Sn

)
where Si = s(Xi ,Yi )

3 For test point n + 1 return prediction interval

C(Xn+1) = {y ∈ Y : s(Xn+1, y) ≤ q̂}

2Vovk et al 2005, Algorithmic Learning in a Random World
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The conformal score

The residual score:

s(x , y) = |y − µ̂(x)|, where µ̂ fitted on pretraining data

=⇒ C(Xn+1) = µ̂(Xn+1)± q̂
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The conformal score

An alternative score function — (will see more examples later on)

The scaled residual score:3

s(x , y) =
|y − µ̂(x)|

σ̂(x)
, where µ̂, σ̂ fitted on pretraining data

=⇒ C(Xn+1) = µ̂(Xn+1)± q̂ · σ̂(Xn+1)

Compare to residual score:

(figure from Lei et al 2018)

3Lei et al 2018, Distribution-Free Predictive Inference for Regression
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Split conformal: summary

Split CP allows us to start with any pretrained model/score,

and then calibrate it to have valid predictive coverage

(as long as we can assume exchangeability!)

Drawback: model µ̂ (or score s) less accurate due to data splitting
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Full conformal prediction

Intuition—

• Split CP fits µ̂ to part of the data, to ensure Si ’s are exch.

• Full CP: use all the data for fitting µ̂ and ensure Si ’s are exch.

An additional assumption:

The symmetric algorithm assumption

For any Z1, . . . ,Zm and any σ ∈ Sm,

A(Z1, . . . ,Zm) = A(Zσ(1), . . . ,Zσ(m)).
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Full conformal prediction

Full CP, oracle version: imagine we could observe Yn+1

• Fit model to training+test data

µ̂ = A((X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1))

• Compute residuals

Si = |Yi − µ̂(Xi )|, i = 1, . . . , n; Sn+1 = |Yn+1 − µ̂(Xn+1)|

• Check if Sn+1 ≤ Quantile(1−α)(1+1/n)(S1, . . . ,Sn)

↖
If data points are exchangeable, and A is symmetric,

then S1, . . . ,Sn+1 are exchangeable

⇒ this event has ≥ 1− α probability
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Full conformal prediction

Running full conformal in practice:

• Fit model to training+test data

µ̂
y = A((X1, Y1), . . . , (Xn, Yn), (Xn+1, y))

• Compute residuals

S
y
i = |Yi − µ̂

y (Xi )|, i = 1, . . . , n, S
y
n+1 = |y − µ̂

y (Xn+1)

• Check if S
y
n+1 ≤ Quantile(1−α)(1+1/n)(S

y
1 , . . . , S

y
n )

y ⇝ {Yes,No}

↙ ↘
if Yes: add y to C(Xn+1) if No: discard y

Test value y ∈ Y
↘

Note: split CP can be viewed as a special case of full CP:

A returns a pretrained model µ̂ — doesn’t depend on data
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Full conformal prediction

Theorem: full conformal4

If Z1, . . . ,Zn+1 are exchangeable, and A is symmetric,

then full conformal prediction satisfies

P {Yn+1 ∈ C(Xn+1)} ≥ 1− α

Proof:

1 Need to verify

Yn+1 ∈ C(Xn+1) ⇐⇒ Sn+1 ≤ Quantile1−α(S1, . . . ,Sn,Sn+1)

2 Need to verify that S1, . . . ,Sn, Sn+1 are exchangeable

4Vovk et al 2005, Algorithmic Learning in a Random World
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Full conformal prediction

1 Yn+1 ∈ C(Xn+1) ⇐⇒ Sn+1 ≤ Quantile1−α(S1, . . . ,Sn,Sn+1)

By construction,

If y = Yn+1 ⇝ Sy
i = Si for all i = 1, . . . , n + 1

↗ ↖
train A on (X1, Y1), . . . , (Xn, Yn), (Xn+1, y) train A on (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)

Yn+1 ∈ C(Xn+1) ⇐⇒ S
Yn+1

n+1 ≤ Quantile(1−α)(1+1/n)(S
Yn+1

1 , . . . ,SYn+1
n )

⇐⇒ Sn+1 ≤ Quantile(1−α)(1+1/n)(S1, . . . ,Sn)

⇐⇒ Sn+1 ≤ Quantile1−α(S1, . . . ,Sn,Sn+1)
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Full conformal prediction

How full conformal is run:
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• µ̂ needs to be refitted for each Xn+1 & each possible y
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Full conformal prediction: general score

Full CP can be run with any conformal score function

New definition of an algorithm:

A maps a data set to a score function s : X × Y → R.

Full conformal prediction (general score)

C(Xn+1) =
{
y ∈ Y : Sy

n+1 ≤ Quantile(1−α)(1+1/n)

(
Sy
1 , . . . ,S

y
n

)}
where

Sy
i = sy (Xi ,Yi ), i = 1, . . . , n, Sy

n+1 = sy (Xn+1, y),

for fitted score function sy = A
(
(X1,Y1), . . . , (Xn,Yn), (Xn+1, y)

)
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Full conformal prediction: general score

Example: the Wine Quality data set5
fi
xe
d
.a
ci
d
it
y

vo
la
ti
le
.a
ci
d
it
y

. . .

a
lc
o
h
o
l

ra
ti
n
g

training

data

+test

point

3
7
4

...

4

?

←− run the regression with each value 0, . . . , 10

(for each test point)

Prediction sets

0 1 2 3 4 5 6 7 8 9 10
Test point 1

Test point 2

Test point 3

Test point 4

...

5Cortez et al 2009, Wine Quality data set, UCI Machine Learning Repository
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Test point 1
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5Cortez et al 2009, Wine Quality data set, UCI Machine Learning Repository
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Full conformal prediction: computational challenges

For a real-valued response...

• Running full CP requires refitting model for every value y ∈ R

Summary of approaches used in practice:

• Most common — restrict to a grid of y values (but no theory)

• Can use a discretized version of A to restore theory6

• Specialized methods for specific algorithms/settings,

e.g., Ridge,7 Lasso,8 stable algorithms9

6Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference

7Burnaev & Vovk 2014, Efficiency of conformalized ridge regression

8Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

9Ndiaye 2022, Stable Conformal Prediction Sets
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Another look at the theory

Recall theoretical guarantee for split CP & full CP:

P {Yn+1 ∈ C(Xn+1)} ≥ 1− α

Limitations:

• Coverage is marginal, may not hold conditional on Xn+1 —

what if we undercover for certain subpopulations?

• Requires exchangeability — what if there is distribution drift?

• Full CP requires symmetric A

See Part 2 for some methods to address these limitations
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Conformal + CV



Using cross-validation for inference

Summarizing different methods:

• Split CP fits µ̂ to part of the data ⇝ distrib.-free theory

• Full CP: use all the data for µ̂ and achieves distrib.-free theory,

but computationally very expensive

• Can cross-validation based methods offer a compromise?
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Using cross-validation for inference

Leave-one-out CV (the “jackknife”):

C(Xn+1) = µ̂(Xn+1)± Quantile1−α
(
{|Yi − µ̂−i (Xi )|}i=1,...,n

)
↗ ↗

fitted on all data µ̂−i fitted on {(Xℓ, Yℓ)}ℓ ̸=i

(the leave-one-out model)

More computationally efficient: K -fold CV

• Partition {1, . . . , n} = A1 ∪ · · · ∪ AK , with |Ak | = n/K

• Fit models µ̂−Ak
to data {(Xi ,Yi )}i ̸∈Ak

• Compute the margin of error using residuals{
|Yi − µ̂−Ak

(Xi )|
}
k=1,...,K ;i∈Ak
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Using cross-validation for inference

Leave-one-out CV: simulation
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Train: 90% coverage

Test: 92% coverage
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Using cross-validation for inference

However, no assumption-free theory for CV...

Example: least squares regression + jackknife

Coverage on test set

d=50, n=100 (mean = 89%)
d=50, n=55 (mean = 85%)

0.4 0.6 0.8 1.0

• Theoretical guarantees under asymptotic settings

• In practice, generally we see ≈ 1− α coverage,

but unstable models may lead to undercoverage
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Challenges for cross-validation

Why does distribution-free theory hold for split CP but not for CV?

C(Xn+1) = µ̂(Xn+1)± q̂ ⇝ coverage if |Yn+1 − µ̂(Xn+1)|︸ ︷︷ ︸
=Sn+1

≤ q̂

• For split conformal, q̂ is quantile of calibration residuals

Si = |Yi − µ̂(Xi )|, i = n0 + 1, . . . , n

and µ̂ is pretrained ⇒ Sn0+1, . . . ,Sn,Sn+1 are exchangeable

• For jackknife, q̂ is quantile of leave-one-out residuals

Si = |Yi − µ̂−i (Xi )|, i = 1, . . . , n

⇒ S1, . . . ,Sn,Sn+1 are not exchangeable
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Jackknife & jackknife+

Jackknife: C(Xn+1) = µ̂(Xn+1)± Quantile1−α
(
Si
)

Jackknife can equivalently be defined as:

C(Xn+1) =
[
Quantileα(µ̂(Xn+1)− Si ),Quantile1−α(µ̂(Xn+1) + Si )

]

//////////////////////////////

−Quantile1−α(−µ̂(Xn+1) + Si )

A modified version of the method: the jackknife+.10

C(Xn+1) =
[
− Quantile(1−α)(1+1/n)

(
− µ̂−i (Xn+1) + Si

)
,

Quantile(1−α)(1+1/n)

(
µ̂−i (Xn+1) + Si

)]
10B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+
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Jackknife & jackknife+

⋆ ⋆
µ̂(Xn+1)± S1

µ̂(Xn+1)± S2

µ̂(Xn+1)± S3

µ̂(Xn+1)± Sn

.

.

.

Jackknife

⋆

⋆

µ̂−1(Xn+1)± S1

µ̂−2(Xn+1)± S2

µ̂−3(Xn+1)± S3

µ̂−n(Xn+1)± Sn

.

.

.

Jackknife+
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Jackknife & jackknife+

Empirical comparison (linear regression with n = 100):

• “Ridgeless” regression — minimum-ℓ2-norm solution, if d > n

• Note: ridgeless regression is stable except the d ≈ n regime11

11Hastie et al 2022, Surprises in High-Dimensional Ridgeless Least Squares Interpolation
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Jackknife+ coverage guarantee

Theorem: coverage for jackknife+12

If Z1, . . . ,Zn+1 are exchangeable, and A is symmetric,

then jackknife+ satisfies

P {Yn+1 ∈ C(Xn+1)} ≥ 1− 2α

(In contrast, jackknife may have zero coverage, in the worst case)

12B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+
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From leave-one-out to K -fold

To avoid computational cost of leave-one-out CV —

K -fold CV (e.g., K = 5 or K = 10)

• Partition {1, . . . , n} into K folds A1 ∪ · · · ∪ AK

• Fit model µ̂−Ak
= A

(
{(Xi ,Yi ) : i ∈ {1, . . . , n}\Ak}

)
• For i ∈ Ak define Si = |Yi − µ̂−Ak

(Xi )|

C(Xn+1) = µ̂(Xn+1)± Quantile1−α(S1, . . . ,Sn)
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To avoid computational cost of leave-one-out CV —
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From leave-one-out to K -fold

Generalize jackknife+ to the K -fold setting ⇝ CV+

K-fold CV+

• Partition {1, . . . , n} into K folds A1 ∪ · · · ∪ AK

• Fit model µ̂−Ak
= A

(
{(Xi ,Yi ) : i ∈ {1, . . . , n}\Ak}

)
• For i ∈ Ak define Si = |Yi − µ̂−Ak

(Xi )|
• Prediction set

C(Xn+1) =

[
−Quantile(1−α)(1+1/n)

(
{−µ̂−Ak

(Xn+1)+Si}
)
,

Quantile(1−α)(1+1/n)

(
{µ̂−Ak

(Xn+1) + Si}
)]
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From leave-one-out to K -fold

⋆ ⋆
µ̂(Xn+1)± S1

µ̂(Xn+1)± S2

µ̂(Xn+1)± S3

µ̂(Xn+1)± Sn

.

.

.

CV

⋆

⋆

µ̂−A1(Xn+1)± S1

µ̂−A1(Xn+1)± S2

µ̂−A1(Xn+1)± S3

µ̂−SK (Xn+1)± Sn

.

.

.

CV+
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Cross-conformal prediction

CV+ is related to a more general method:

Cross-conformal prediction13,14

• Partition {1, . . . , n} into K folds A1 ∪ · · · ∪ AK

• Fit score function s(k) = A
(
{(Xi ,Yi ) : i ∈ {1, . . . , n}\Ak}

)
• For i ∈ Ak define Si = s(k)(Xi ,Yi )

• Prediction set

C(Xn+1) =

y ∈ Y :
K∑

k=1

∑
i∈Ak

1{Si ≥ s(k)(Xn+1, y)} ≥ α(n + 1)


13Vovk 2015, Cross-conformal predictors

14Vovk et al 2018, Cross-conformal predictive distributions

49/65



Relating cross-conformal & CV+

For the residual score function s(x , y) = |y − µ̂(x)|,

Ccross-conf.(Xn+1) ⊆ CCV+(Xn+1)

Comparison:

• Cross-conformal is more flexible (can use any score function)

• CV+ always returns an interval (by construction)
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Theory for cross-conformal & CV+

Theorem: coverage for CV+ and cross-conformal

If Z1, . . . ,Zn+1 are i.i.d., and A is symmetric,

then K -fold cross-conformal satisfies

P {Yn+1 ∈ C(Xn+1)} ≥

1− 2α− 2/K

1− 2α− 2K/n

As a special case, the same is true for K -fold CV+.

15

16

=⇒ For any K ,

P {Yn+1 ∈ C(Xn+1)} ≥ 1− 2α− 2√
n
.

15B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

16Vovk et al 2018, Cross-conformal predictive distributions
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Conformal methods vs model-based

methods



Conformal or classical?

In a practical application....

Should we use a model?

• Model is probably a good approximation

• Obtain more precise answers

• But, may lose coverage if assumptions don’t hold

Should we use conformal prediction?

• Coverage doesn’t depend on assumptions

• But, coverage guarantee is only marginal

• Would we get wider intervals (less informative)?

52/65



Conformal or classical?

Answer: use both, & get the best of both worlds!

Conformal prediction is a family of methods

• Choosing a score specifies a particular method

• Can incorporate models / assumptions into the score
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The conformal score: examples

Recall....

1 The residual score: s(x , y) = |y − µ̂(x)|
2 The scaled residual score:17

s(x , y) =
|y − µ̂(x)|

σ̂(x)
, where µ̂, σ̂ fitted on pretraining data

(figure from Lei et al 2018)
17Lei et al 2018, Distribution-Free Predictive Inference for Regression
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The conformal score: examples

3 Conformalized quantile regression:18

s(x , y) = max {y − γ̂hi(x), γ̂lo(x)− y}
where γ̂lo, γ̂hi︸ ︷︷ ︸
estimated quantiles of Y |X

fitted on pretraining data

=⇒ C(Xn+1) = [γ̂lo(Xn+1)− q̂, γ̂hi(Xn+1) + q̂]

Compare to residual score:(a) Split: Avg. coverage 91.4%; Avg. length 2.91. (b) Local: Avg. coverage 91.7%; Avg. length 2.86.

(c) CQR: Avg. coverage 91.06%; Avg. length 1.99. (d) Length of prediction intervals.

Figure 2: Prediction intervals on simulated heteroscedastic data with outliers (see Figure 7 for a full
range display): (a) the standard split conformal method, (b) its locally adaptive variant, and (c) CQR
(our method). The length of the interval as a function of X is shown in (d). The target coverage rate
is 90%. The broken black curve in (a) and (b) is the pointwise prediction from the random forest
estimator. In (c), we show two curves, representing the lower and upper quantile regression estimates
based on random forests [22]. Observe how in this example the quantile regression estimates closely
match the adjusted estimates—the boundary of the blue region—obtained by conformalization.

incurred by this mistake. Similarly, if Yi is above the upper endpoint of the interval, Yi > q̂↵hi(Xi),
then Ei = |Yi � q̂↵hi(Xi)|. Finally, if Yi correctly belongs to the interval, q̂↵lo(Xi)  Yi  q̂↵hi(Xi),
then Ei is the larger of the two non-positive numbers q̂↵lo(Xi)� Yi and Yi � q̂↵hi(Xi) and so is itself
non-positive. The conformity score thus accounts for both undercoverage and overcoverage.

Finally, given new input data Xn+1, we construct the prediction interval for Yn+1 as

C(Xn+1) = [q̂↵lo(Xn+1)�Q1�↵(E, I2), q̂↵hi(Xn+1) + Q1�↵(E, I2)] , (10)

where

Q1�↵(E, I2) := (1� ↵)(1 + 1/|I2|)-th empirical quantile of {Ei : i 2 I2} (11)

conformalizes the plug-in prediction interval.

For ease of reference, the CQR procedure is summarized in Algorithm 1. We now prove that its
prediction intervals satisfy the marginal, distribution-free coverage guarantee (1).

Theorem 1. If (Xi, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction interval C(Xn+1)
constructed by the split CQR algorithm satisfies

P{Yn+1 2 C(Xn+1)} � 1� ↵.
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(figure from Romano et al 2019)

18Romano et al 2019, Conformalized quantile regression
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The conformal score: examples

4 Distributional conformal prediction:19

s(x , y) =
∣∣F̂ (y |x)−0.5

∣∣ where F̂ (·|x)︸ ︷︷ ︸
estimated conditional CDF

of Y given X = x

is fitted on pretraining data

=⇒ C(Xn+1) =
[
F̂−1(0.5− q̂ |Xn+1), F̂−1(0.5 + q̂ |Xn+1)

]

19Chernozhukov et al 2019, Distributional conformal prediction
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The conformal score: examples

5 The high-density score:20

s(x , y) = −f̂ (y |x) where f̂ (·|x)︸ ︷︷ ︸
estimated conditional density

of Y given X = x

is fitted on pretraining data

=⇒ C(Xn+1) =
{
y ∈ Y : f̂ (y |Xn+1) ≥ −q̂

}

20Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators
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The conformal score: examples

If the response Y is categorical, with values Y = {y1, . . . , yK}—
6 The high-probability score:

s(x , yk) = −p̂k(x) where p̂k(x)︸ ︷︷ ︸
estimate of P {Y = yk | X = x}

is fitted on pretraining data

=⇒ C(Xn+1) =
{
yk : p̂k(Xn+1) ≥ −q̂

}

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {prediction set

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {prediction set
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Model-based theory for conformal

A general recipe:

• Suppose that if our model is correct,

the “oracle” answer can be written in the form

C∗(Xn+1) = {y : s∗(Xn+1, y) ≤ q∗}

• Compare to the split conformal prediction set:

C(Xn+1) = {y : s(Xn+1, y) ≤ q̂}
⇝ for conformal to approximate the oracle, need

s ≈ s∗ and q̂ ≈ q∗

↗ ↖
relies on fitting a good model

using the pretraining data

relies on concentration of quantiles

for calibration set scores
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Model-based theory for conformal: examples

1 If the true model is Y = µ(X ) + ϵ where ϵ ⊥⊥ X is symmetric

& unimodal noise,

C∗(Xn+1) = µ(Xn+1)± Quantile1−α(|ϵ|)
= {y : s∗(Xn+1, y) ≤ Quantile1−α(|ϵ|)}

for s∗(x , y) = |y − µ(x)|

=⇒ if we use the residual score, and if µ̂ → µ, then21

C(Xn+1) ≈ C∗(Xn+1) as n → ∞

21Lei et al 2018, Distribution-Free Predictive Inference for Regression
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Model-based theory for conformal: examples

2 In the regression setting, suppose we would like an

equal-tailed, conditional coverage guarantee.

Then the optimal set is

C∗(Xn+1) =
[
γα/2(Xn+1), γ1−α/2(Xn+1)

]↙ ↘
true quantiles of Y | X

Can rewrite as

C∗(Xn+1) = {y : s∗(Xn+1, y) ≤ 0}
where s∗(x , y) = max

{
y − γ1−α/2(x), γα/2(x)− y

}
If γ̂lo → γα/2 and γ̂hi → γ1−α/2,

22

C(Xn+1) ≈ C∗(Xn+1) as n → ∞

22Romano et al 2019, Conformalized quantile regression; Sesia & Candès 2020, A comparison of some conformal

quantile regression methods
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Model-based theory for conformal: examples

3 In the categorical setting, with conditional PMF p(y | x) —
smallest possible prediction set with marginal coverage is

C∗(Xn+1) = {y : p(y | x) ≥ t}
= {y : s∗(x , y) ≤ −t} where s∗(x , y) = −p(y | x)

=⇒ if we use the high-probability score, & p̂ → p, then23

C(Xn+1) ≈ C∗(Xn+1) as n → ∞

23Sadinle et al 2019, Least ambiguous set-valued classifiers with bounded error levels
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Model-based theory for conformal

Theorem (informal): asymptotic results for split CP24

Assume Z1,Z2, . . . are i.i.d., & the data split satisfies n0, n1 → ∞.

If sn → s∗, then

|C(Xn+1)△C∗(Xn+1)| → 0.

24Duchi et al 2024, Predictive inference in multi-environment scenarios; Angelopoulos, B., Bates 2024, Theoretical

Foundations of Conformal Prediction
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Summary



Summary: part 1

• Conformal allows us to start with any algorithm,

& calibrate it to achieve (marginal) predictive coverage

• Tradeoff between statistical & computational efficiency:

Split CP, full CP, and CV-based versions

• Conformal + model-based methods ⇝ “best of both worlds”
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Preview: part 2

In part 2, we will ask if conformal can be extended to handle:

• The streaming-data setting

• Distribution shift & distribution drift

• Conditional coverage rather than only marginal coverage

• & other extensions
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