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Introduction



Regression & prediction

Supervised learning setting:

Training data (X1, Y1), (X2, Y2),..., (Xs, Yn) € X x Y

Goals:

e Inference on the regression — model distribution of Y given X

e Predictive inference — predict value of Y given X
for test points (Xpt1, Ynt1), (Xnt2, Yat2), - --



Regression & prediction — classical approach

e We assume a parametric model on (X, Y) oron Y | X

e We perform estimation & inference on the parameters....

e ....& then we can provide prediction intervals:



Regression & prediction — classical approach

e We assume a parametric model on (X, Y) oron Y | X

e.g., for linear regression, Y = X' 5+ N (0, 0?)

e We perform estimation & inference on the parameters....

e.g., for linear regression, distribution of 3 and 5°

e ....& then we can provide prediction intervals:

e.g., for linear regression, Y 11 € X,,TH‘B + ...
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Regression & prediction — nonparametric approach

e We allow a nonparametric model for (X, Y) or Y | X,
with assumptions/constraints

e We perform estimation & inference on the model....

e ....& then we can provide prediction intervals:



Regression & prediction — nonparametric approach

e We allow a nonparametric model for (X, Y) or Y | X,
with assumptions/constraints

e.g., assume E[Y | X] is smooth

e We perform estimation & inference on the model....

e.g., ii(x) = estimate of E[Y | X = x], via a Gaussian kernel

e ....& then we can provide prediction intervals:

Bofog Yn+1 E ﬁ(Xn+1) + ...
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Regression & prediction — ML approach

e Train an overparametrized model for Y | X

e Provide predictions for new feature vectors

e Use a data-driven strategy for uncertainty quantification



Regression & prediction — ML approach

e Train an overparametrized model for Y | X

e.g., train a neural net on {(Xj, Y;)}

e Provide predictions for new feature vectors

e.g., Ynti = neural net's prediction for feature X, ;

e Use a data-driven strategy for uncertainty quantification

e.g., holdout data / cross-validation / bootstrapping / etc



Regression & prediction — challenges

What can go wrong?

e For the parametric approach — our model may be wrong

e For the nonparametric approach — our assumptions (e.g.,
smoothness) may not hold

e For the ML approach — is data-driven inference guaranteed

to give valid answers?



Regression & prediction — challenges

Our choices:

e Rely on assumptions being correct
e Or, test empirically whether our assumptions hold

e Or, use inference methods that don't rely on assumptions
(or, only rely on weaker assumptions)



Regression & prediction — data-driven predictive inference

Setting:
o Features X € X, response Y € R (or Y € ))
e Available training data (X1, Y1),..., (Xn, Ya) ~ fit model i

e Goal: given Xp11, Xpt2,. .., predict Yoi1, Yoio, ...



Regression & prediction — data-driven predictive inference

Setting:
o Features X € X, response Y € R (or Y € ))
e Available training data (X1, Y1),..., (Xn, Ya) ~ fit model i

e Goal: given Xp11, Xpt2,. .., predict Yoi1, Yoio, ...

Prediction? or predictive inference?
Yori = m(Xnsi) Yoti € i(Xnti) £ (margin of error)

how to calculate?



Using the training set for inference

Using the training loss:

If fitted model j1 overfits to training data, generally

~ 1¢ A
| Yori — 1(Xnti)| > N E Y = (X))
i=1

test error

avg. training error

even if training & test data are from the same distribution



Regression & prediction — data-driven predictive inference

Simulation: suppose we construct prediction intervals as

C(Xnti) = i(Xnsi) + Quantiles_o(|Ys — ), -, [ Yo — (X))

residuals on training data

Train: 90% coverage



Regression & prediction — data-driven predictive inference

Simulation: suppose we construct prediction intervals as

C(Xnti) = i(Xnsi) + Quantiles_o(|Ys — ), -, [ Yo — (X))

residuals on training data

Train: 90% coverage Test: 78% coverage



Using a holdout set for inference

To avoid overfitting — use a holdout set ( “calibration set”)
e Split the training data, n = ng + ny
e Fit model [i on pretraining set {(Xi, Yi)}}1<i<n,
e Compute residuals on calibration set, {|Y; — fi(Xj)|}no<i<n

e Prediction interval:

C(Xn+i) = [i(Xn+i) £ Quantiler_o ({| Vi — A(Xi) no<i<n)



Using a holdout set for inference

To avoid overfitting — use a holdout set ( “calibration set”)
e Split the training data, n = ng + ny
e Fit model [i on pretraining set {(Xi, Yi)}}1<i<n,
e Compute residuals on calibration set, {|Y; — fi(Xj)|}no<i<n

e Prediction interval:

C(Xn+i) = A(Xnsi) £ Quantiley_q ({]V; = A(X)|}ng<i<n)
/ N

fitted on pretraining data computed on calibration data



Using a holdout set for inference

Simulation:

Pretrain



Using a holdout set for inference

Simulation:

Pretrain Calibration: 90% coverage



Using a holdout set for inference

Simulation:

T
Pretrain Calibration: 90% coverage  Test: 89% coverage



Using a holdout set for inference

Simulation:

T
Pretrain Calibration: 90% coverage  Test: 89% coverage
g

Note: lower sample size ~ i is less accurate ~~ intervals are wider



Using a holdout set for inference

e The naive method fits a more accurate i,
but the margin of error is too small due to overfitting

e A holdout set method fits a less accurate 71,
but the margin of error is correctly calibrated

e Can we use cross-validation (CV) to get the best of both?
Will return to this!



Distribution-free prediction: aims

The goal of distribution-free inference is to provide guarantees
that are valid universally over all data distributions.

For the problem of predictive inference...

e Can we construct a prediction interval C(X,+;) € ) such that

]P){Yn+j & C(Xn+,’)} > 1—a?



Distribution-free prediction: aims

The goal of distribution-free inference is to provide guarantees
that are valid universally over all data distributions.

For the problem of predictive inference...

e Can we construct a prediction interval C(X,+;) € ) such that

]P){YIPH & C(Xn+,’)} > 1—a?

e Want to avoid overly conservative solutions (C(Xp+1) = Y)

e Want to be able to use any regression method to construct C
(classical or ML methods)



Intro to exchangeability



Introduction to exchangeability

For the rest of this talk: let Z; = (X;, Y;) € X x Y

The i.i.d. data setting
Assume Zy,...,2Zn, Znt1, Zni2, - - - are i.i.d. from some distrib. P

training test



Introduction to exchangeability

For the rest of this talk: let Z; = (X;, Y;) € X x Y

The i.i.d. data setting
Assume Zy,...,2Zn, Znt1, Zni2, - - - are i.i.d. from some distrib. P

training test

Can we call this “distribution-free”?

e No assumptions on P (e.g., P does not need to be smooth)

e But, this does not allow for dependence across time /
distribution shift / etc

e We will return to these settings later



Introduction to exchangeability

The exchangeable data setting
Assume that the data points

Zl?' : 'aZnaZn+laZn+27 SO

training test

are exchangeable, i.e., (Z1,...,2Zm) 4 (Zs@1)s -+ > Zo(m)) for

every m and every permutation o.

e The i.i.d. data setting is a special case
e Conditionally i.i.d. data is another special case

e Note: finite sequences can be exchangeable but not i.i.d.
(de Finetti's theorem does not apply)



Background on conformal prediction



Conformal prediction: background

Background on the conformal prediction (CP) framework:

key idea = statistical inference via exchangeability of the data

Learning by Transduction

Gammerman, Vovk, Vapnik
UAI 1998

Algorithmic Learning
inaRandom World

(@ ersrancs

Vovk, Gammerman, Shafer
2005 — see alrw.net

Lei, G'Sell, Rinaldo,
Tibshirani, Wasserman
JASA 2018
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Conformal prediction: background

Recent developments — software packages & user-friendly tutorials

D e ) g e una: A library for uncertainty

MAPE

MAPIE - Model Agnostic Prediction Interval

quantification

new
ol

& a new theory textbook (75% on arXiv, forthcoming from CUP)

Theoretical Foundations of Conformal Prediction

Anastasios N. Angelopoulos’, Rina Foygel Barber?, Stephen Bates®
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Conformal prediction: background

Recent developments — successful applications in biological

sciences, machine learning, & many more domains

Object Pose Estimation with Statistical Guarantees:
Conformal Keypoint Detection and Geometric Uncertainty Propagation

Journal of Healthcare Informatics Research (2022) 6:241-252
hitps://doi org/10.1007/54166-021-00113-8

REVIEW ARTICLE

Conformal Prediction in Clinical Medical Sciences

Janette Vazquez' - Julio C. Facelli'

PNAS s s

c iction under iate shift for
biomolecular design

regression model

2 %

e '@l @
5| . e%e

2| & @

£ S

fitness

training sequences designed sequence




Split conformal prediction



Split conformal prediction

The split conformal prediction method

@ Using pretraining data Z1,...,Z,,,
construct fitted model [z using any regression algorithm:

fn=A(Z1,...,2Zn)
® Compute quantile g of calibration set residuals:

g = Quantile;;_n)1+41/ny) <{| Yi— ﬁ(X;)I}nO<;gn>

© For test point n+ 1 return prediction interval

C(Xnt1) = i(Xop1) £9



Split conformal prediction

Theorem'

If Z1,...,Zyy1 are exchangeable, then split conformal satisfies:

P{Yn+1 € C(X,«,.A,.l)} >1—a«

LVovk et al 2005, Algorithmic Learning in a Random World



Split conformal prediction

Theorem'
If Z1,...,Zyy1 are exchangeable, then split conformal satisfies:
P{Yn+1 € C(X,«,.A,.l)} >1—a«
Proof:
Define S; = |Y; — u(Xi)| for i =no+1,...,n,n+1
—_——

calibration test

LVovk et al 2005, Algorithmic Learning in a Random World



Split conformal prediction

Theorem'
If Z1,...,Zyy1 are exchangeable, then split conformal satisfies:
P{Yn+1 € C(Xn+1)} >1—a«
Proof:
Define S; = |Y; — u(Xi)| for i =no+1,...,n,n+1
—_——

calibration test

Yn+1 & C(Xn+1) <~ Sn+1 < Quantile(l_&)(lﬂ/nl)(SHOH, boag Sn)

LVovk et al 2005, Algorithmic Learning in a Random World



Split conformal prediction

Theorem'
If Z1,...,Zyy1 are exchangeable, then split conformal satisfies:
P{Yn+1 € C(Xn+1)} >1—a«
Proof:
Define S; = |Y; — u(Xi)| for i =no+1,...,n,n+1
—_——

calibration test

Yn+1 & C(Xn+1) <~ Sn+1 < Quantile(l_&)(lﬂ/nl)(SHOH, boag Sn)

<= Sp+1 < Quantile;_(Spy+1,- - -, Sns Snt1)

LVovk et al 2005, Algorithmic Learning in a Random World



Split conformal prediction

Exchangeability for holdout set methods
If o= A(Z1,...,2Zn,), & the data points are exchangeable, then

[ Yoo1 = i Xngt1)ls - [ Yo = 1(Xn)|, | Yor1 — i(Xns1))|

calibration residuals test residual

are exchangeable.



Split conformal prediction

Exchangeability for holdout set methods
If o =A(Z1,...,2Zn,), & the data points are exchangeable, then

[ Yoo1 = i Xngt1)ls - [ Yo = 1(Xn)|, | Yor1 — i(Xns1))|

calibration residuals test residual

are exchangeable.

— P{Sn+1 S Quantilel_a(5n0+1, “eey 5,77 5n+1)} Z 11—«



The conformal score

Due to the construction of the split conformal method,
C(Xn+1) has the same width regardless of the value of X1

(figure from Lei et al 2018)

Why?
o C(Xng1) = [ A(Xnt1) £G | ={y e R: |y — i(Xnt1)| < G}



The conformal score

Due to the construction of the split conformal method,
C(Xn+1) has the same width regardless of the value of X1

(figure from Lei et al 2018)

Why?

o C(Xns1) = [ Ai(Xo41) £ | ={y € R: |y — fi(Xos1)| < G}
e Equivalently: we are using |y — fi(Xn+1)| as a score
to determine whether y is contained in C(X,41) or not



The conformal score

The split conformal prediction method” (general score)

@ Using pretraining data Z1, ..., Z,,,
construct score function s : X x ) — R using any algorithm

® Compute quantile g of calibration set scores:

q= Quant”e(l—a)(1+1/n1)(SnoJrlv ce Sn)
where S; = s(X;, Y;)

© For test point n+ 1 return prediction interval

C(Xny1) ={y € YV :5(Xny1.¥) < G}

2Vovk et al 2005, Algorithmic Learning in a Random World



The conformal score

The residual score:

s(x,y) = |y — 1i(x)|, where & fitted on pretraining data

= C(Xn+1) = 1(Xnt1) = q



The conformal score

An alternative score function —  (will see more examples later on)
The scaled residual score:?
— 1(x PO .
s(x,y) = |yA(,u§)|’ where i, o fitted on pretraining data
o(x

= C(Xnt1) = 1i(Xn41) £ G- 0(Xnt1)

3Lei et al 2018, Distribution-Free Predictive Inference for Regression



The conformal score

An alternative score function —  (will see more examples later on)
The scaled residual score:?
— 1(x PO .
s(x,y) = |yA(,u§)|’ where i, o fitted on pretraining data
o(x

= C(Xnt1) = 1i(Xn41) £ G- 0(Xnt1)

Compare to residual score:

(figure from Lei et al 2018) 25/65

3Lei et al 2018, Distribution-Free Predictive Inference for Regression



Split conformal: summary

Split CP allows us to start with any pretrained model/score,
and then calibrate it to have valid predictive coverage
(as long as we can assume exchangeability!)

Drawback: model ji (or score s) less accurate due to data splitting



Full conformal prediction




Full conformal prediction

Intuition—

e Split CP fits 1z to part of the data, to ensure S;'s are exch.

e Full CP: use all the data for fitting i and ensure S;'s are exch.



Full conformal prediction

Intuition—

e Split CP fits fu to part of the data, to ensure S;'s are exch.
e Full CP: use all the data for fitting i and ensure S;'s are exch.
An additional assumption:

The symmetric algorithm assumption
For any Z1,...,Zn and any 0 € Sp,

A(Zb =00y Zm) = A(Za'(l)v °cey Zo‘(m))‘



Full conformal prediction

Full CP, oracle version: imagine we could observe Y, 1

e Fit model to training+test data
/7 = -A((le Y1), 000 (Xm n)7 (Xn+la Yn+1))
e Compute residuals
Si=1Yi—p(X)l i=1,....m Spi1=|Yat1 — 0(Xnt1)|

o Check if Sp41 < Quanti|e(1_a)(1+1/n)(51, acap Sn)



Full conformal prediction

Full CP, oracle version: imagine we could observe Y, 1

e Fit model to training+test data
/7 - -A((le Y1), coog (Xm Yn)7 (Xn-i-la Yn+1))
e Compute residuals
Si=1Yi—p(X)l i=1,....m Spi1=|Yat1 — 0(Xnt1)|

o Check if Sp41 < Quantile(l_a)(1+1/n)(51, acap Sn)

N

If data points are exchangeable, and A is symmetric,
then Si,...,S,11 are exchangeable

= this event has > 1 — « probability



Full conformal prediction

Running full conformal in practice:

e Fit model to training+test data
B = A((X1, Y1),

e Compute residuals

- (Xn, Ya), (Xnt1, )

S =1Yi =@ X)), i=1,...,n, Sy =y — B (Xn41)

o Check if Sr{+1 < Quantile(lfa)(1+1/")(51y, L




Full conformal prediction

Running full conformal in practice:

e Fit model to training+test data

B = A((X1, Y1) - - -, (Xa, Ya), (Xnt1, %))
e Compute residuals
S = Y= B0, i=1,ee s, Sl = ly — B (Xnt1)
e Check if Sr{+1 < Quantile(lfa)(1+1/")(51y, .8

l y ~~{Yes,No} %




Full conformal prediction

Running full conformal in practice:

e Fit model to training+test data

B = A((X1, Y1) -5 (Xn, Ya), (Xns1, 7))
TeSt Value y (= y e Compute residuals
S =Y =)L =1 S =y = B (X4)
\r e Check if Sr{+1 < Quantile(lfa)(1+1/")(51y, .8

l y ~~{Yes,No} %

/ N\

if Yes: add y to C(Xp+1) if No: discard y




Full conformal prediction

Running full conformal in practice:

o Fit model to training-+test data
B = A((X1, Y1) - - -, (Xa, Ya), (Xnt1, %))
Test value yey e Compute residuals
S =1V =X i=1,....n, SY; =y — B (Xat1)
\{ e Check if S¥. | < Quantile(; _ q)(141/n)(SY>- -+, S))
l y ~~{Yes,No} %

/ N\

if Yes: add y to C(Xp+1) if No: discard y

Note: split CP can be viewed as a special case of full CP:
A returns a pretrained model ;i — doesn’t depend on data



Full conformal prediction

Theorem: full conformal®
If Z1,...,2Z,+1 are exchangeable, and A is symmetric,
then full conformal prediction satisfies

P{Yn+1 € C(X,«,.A,.l)} >1—a«

Proof:

@ Need to verify
YnJr]_ € C(Xn+1) <— Sn+1 < Quantilel,a(Sl, ceey Sn, 5n+1)

® Need to verify that S1,...,5,, Sh+1 are exchangeable

4Vovk et al 2005, Algorithmic Learning in a Random World



Full conformal prediction

(1) Yn+1 E C(Xn+1) < 5n+1 < Quantilel,a(Sl, soag 5,,, 5n+1)

By construction,

Ify=VYpp1 ~ S/ =S foralli=1,...,n+1
a N

train A on (X1, Y1), .., (Xn, Ya), (Xns1,5) train A on (X, V1), - - - (X, Ya), (Xns1, Yae1)



Full conformal prediction

® Y, 1€ C( n+1) <~ 5n+1 < Quantile; _ a(Sl, RN Sn,5n+1)

By construction,

Ify=VYpp1 ~ S/ =S foralli=1,...,n+1
a N

train A on (X1, Y1), ..., (Xn, Yn), (Xn+1,Y) train A on (X1, Y1), ..., (Xn» Yn), (Xn+1, Yat1)

Yn+1 € C( n+1) — Sniil < Quantlle(l a)(141/n) (5Y+1 . '75r2/n+1)
<~ 5n+1 < Quantlle(l_a)(1+1/n)(51, coog Sn)
<~ 5n+1 < Quantilel,a(Sl, 500 0 Oe 5n+1)



Full conformal prediction

How full conformal is run:

e /i needs to be refitted for each X,11 & each possible y



Full conformal prediction: general score

Full CP can be run with any conformal score function

New definition of an algorithm:
A maps a data set to a score function s : X x Y — R.

Full conformal prediction (general score)

C(X,H_l) = {y ey: 5,}7/4_1 < Quanti|6(1,a)(1+1/n) (5{, coog 5,},/)}
where

Sy =9(X;,Y;),i=1,...,n, Sr{—&-l = s (Xns1,Y),

I

for fitted score function s¥ = A((X1, Y1), ..., (Xn, Yn), (Xnt1,¥))



Full conformal prediction: general score

Example: the Wine Quality data set’

fixed.acidity
volatile.acidit

S 0
| H 3
7
| B
||
training |
data
|
4
test +
. | L ?
point

5Cortez et al 2009, Wine Quality data set, UClI Machine Learning Repository



Full conformal prediction: general score

Example: the Wine Quality data set’

fixed.acidity
volatile.acidi

S w
83
s C
| H s
7
| B
||
training |
data
||
4
test + . )
Ao ] [ ] ? <— run the regression with each value 0,..., 10
poin

(for each test point)
5Cortez et al 2009, Wine Quality data set, UClI Machine Learning Repository



Full conformal prediction: general score

Example: the Wine Quality data set’

»%
T &
79 3
v 5 £
& B s C
[ | H 3 Prediction sets
7
|| H 01 2 3 4 5 6 7 8 9 10
. Test point 1
. Test point 2
training |
data . . Test point 3
Test point 4
4

test +

] [ | ? <— run the regression with each value 0,..., 10

(for each test point)
5Cortez et al 2009, Wine Quality data set, UCI Machine Learning Repository

point




Full conformal prediction: general score

Example: the Wine Quality data set’

»%
T &
79 3
v 5 £
& B s C
[ | H 3 Prediction sets
7
|| H 01 2 3 4 5 6 7 8 9 10
. Test point 1
. Test point 2
training |
data . . Test point 3
Test point 4
4

test +

] [ | ? <— run the regression with each value 0,..., 10

(for each test point)
5Cortez et al 2009, Wine Quality data set, UCI Machine Learning Repository

point




Full conformal prediction: general score

Example: the Wine Quality data set’

z
23T
T ]
[T —
<% 2P
£3 g 3
e > w °
| H 3 Prediction sets
7
|| | 01 2 3 45 6 7 8 9 10
. *c Test point 1
. ‘}( Test point 2
training |
data -+ Test point 3
* Test point 4
4

test +

] [ | ? <— run the regression with each value 0,..., 10

(for each test point)
5Cortez et al 2009, Wine Quality data set, UCI Machine Learning Repository

point




Full conformal prediction: computational challenges

For a real-valued response...

e Running full CP requires refitting model for every value y € R




Full conformal prediction: computational challenges

For a real-valued response...

e Running full CP requires refitting model for every value y € R

Summary of approaches used in practice:

e Most common — restrict to a grid of y values (but no theory)
e Can use a discretized version of A to restore theory®

e Specialized methods for specific algorithms/settings,
e.g., Ridge,7 Lasso,® stable algorithms9

%Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
"Burnaev & Vovk 2014, Efficiency of conformalized ridge regression
8Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

9Ndiaye 2022, Stable Conformal Prediction Sets



Another look at the theory

Recall theoretical guarantee for split CP & full CP:

]P){Yn—i,-l S C(X,p,.l)} 2 1—«

Limitations:

e Coverage is marginal, may not hold conditional on X, 1 —
what if we undercover for certain subpopulations?

e Requires exchangeability — what if there is distribution drift?

e Full CP requires symmetric A

See Part 2 for some methods to address these limitations



Conformal + CV




Using cross-validation for inference

Summarizing different methods:

e Split CP fits i to part of the data ~~ distrib.-free theory

e Full CP: use all the data for i and achieves distrib.-free theory,
but computationally very expensive

e Can cross-validation based methods offer a compromise?



Using cross-validation for inference

Leave-one-out CV (the “jackknife"):

C(Xnt1) = A(Xny1) £ Quantiley_o ({|Yi — A—i(Xi)|}i=1,...,n)
/

fitted on all data A fitted on {(Xg, Yp)}osi
(the leave-one-out model)



Using cross-validation for inference

Leave-one-out CV (the “jackknife"):

C(Xnt1) = A(Xnt1) £ Quantile;_o, ({| Vi — i—i(Xi)|}i=1,....n)
a

fitted on all data A fitted on {(Xg, Yp)}osi
(the leave-one-out model)

More computationally efficient: K-fold CV
e Partition {1,...,n} = A1 U---U Ak, with |Ac| = n/K
e Fit models fi_4, to data {(Xj, Y;)}iga,

e Compute the margin of error using residuals

{IY: = B-a (X} oy keiea,



Using cross-validation for inference

Leave-one-out CV: simulation

12
1

10
L

Train: 90% coverage



Using cross-validation for inference

Leave-one-out CV: simulation

12
1
12
1

10
1
10
|

Train: 90% coverage Test: 92% coverage



Using cross-validation for inference

However, no assumption-free theory for CV...
Example: least squares regression + jackknife

50, n=100 (mean = 89%)
— 50, n=55 (mean = 85%)

== 1 [

T T T 1
0.4 0.6 0.8 1.0

Coverage on test set

e Theoretical guarantees under asymptotic settings
e In practice, generally we see ~ 1 — « coverage,
but unstable models may lead to undercoverage



Challenges for cross-validation

Why does distribution-free theory hold for split CP but not for CV?

C(Xnt1) = f(Xn+1) £q ~ coverage if |Yoi1 — i(Xn11)| < @

:5n+1



Challenges for cross-validation

Why does distribution-free theory hold for split CP but not for CV?

C(Xnt1) = W(Xn+1) £q ~ coverage if |Yni1 — [i(Xnt1)| < G

:5n+1

e For split conformal, g is quantile of calibration residuals
Si=Yi—uX)l, i=no+1,....n

and fi is pretrained = Sp41, ..., S, Sp+1 are exchangeable



Challenges for cross-validation

Why does distribution-free theory hold for split CP but not for CV?

C(Xnt1) = W(Xn+1) £q ~ coverage if |Yni1 — [i(Xnt1)| < G

:5n+1

e For split conformal, g is quantile of calibration residuals
Si=Yi—uX)l, i=no+1,....n
and fi is pretrained = Sp41, ..., S, Sp+1 are exchangeable

e For jackknife, g is quantile of leave-one-out residuals
Si=Ya— —i(X)l, i=1,...,n

= 51,...,5p,Sp11 are not exchangeable



Jackknife & jackknife+

Jackknife: C(Xp41) = 11(Xp+1) £ Quantile; (S,-)

Jackknife can equivalently be defined as:

C(Xn+1) = [Qua”t”ea(ﬁ(xnﬂ) — Si), Quantile; o (12(Xn41) + Si)}




Jackknife & jackknife+

Jackknife: C(Xp41) = 11(Xp+1) £ Quantile; (S,-)

Jackknife can equivalently be defined as:

C(Xns1) = [QUAHHEL KLY IV8YY, Quantites _o((Xns1) + )]

—Quantile; o (—(Xnt1) + S))




Jackknife & jackknife+

Jackknife: C(Xp41) = 11(Xp+1) £ Quantile; (S,-)

Jackknife can equivalently be defined as:

C(Xns1) = |QUARKHELHULLY I 81Y, Quantiley (i Xnia) + 7))

—Quantile; o (—(Xnt1) + S))

A modified version of the method: the jackknife+.'°
C(Xn41) = [ — Quantile(;_q)(141/n) ( — A—i(Xns1) + Si),

Quantile(1_a)(141/n) (F-i(Xnt1) + 5;)}

108 Candes, Ramdas, Tibshirani 2019, Predictive inference with the jackknife-
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Jackknife & jackknife+

Empirical comparison (linear regression with n = 100):

i - 50 — naive

0.8 \ 7 —— jackknife

| s 40 —— jackknife+
%0'6 — naive '-§ 30
o —— jackknife E
50-4 —— jackknife+ § 20
B
0.2 10
0.0 0
0 50 100 150 200 0 50 100 150 200

Dimension d Dimension d

e “Ridgeless” regression — minimum-£>-norm solution, if d > n




Jackknife & jackknife+

Empirical comparison (linear regression with n = 100):

50 —— naive
0.8 ( —— jackknife
\‘ [ s 40 —— jackknife+
%0'6 . — naive '-§ 30
o —— jackknife E
50-4 —— jackknife+ § 20
B
0.2 10
0.0 0
0 50 100 150 200 0 50 100 150 200

Dimension d Dimension d

e “Ridgeless” regression — minimum-£>-norm solution, if d > n

o Note: ridgeless regression is stable except the d ~ n regime'!

Hastie et al 2022, Surprises in High-Dimensional Ridgeless Least Squares Interpolation
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Jackknife+ coverage guarantee

Theorem: coverage for jackknife+'”
If Z1,...,2Z,+1 are exchangeable, and A is symmetric,
then jackknife+ satisfies

P{Yn+1 € C(X,H_]_)} 2 1— 2«

(In contrast, jackknife may have zero coverage, in the worst case)

lZB , Candés, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+



From leave-one-out to K-fold

To avoid computational cost of leave-one-out CV —
K-fold CV (e.g., K =5 or K = 10)



From leave-one-out to K-fold

To avoid computational cost of leave-one-out CV —
K-fold CV (e.g., K =5 or K = 10)

e Partition {1,...,n} into K folds Ay U---U Ak

o Fit model fi_p, = A({(X,-, Yi)iied{l,... n}\Ak}>
e Forie Ak define 5,' = |Y, — //ﬁ\—Ak(Xi)|

C(Xnt1) = f(Xn+1) = Quantile;_o(S1, .-, Sn)



From leave-one-out to K-fold

Generalize jackknife+ to the K-fold setting ~~ CV+
K-fold CV+
e Partition {1,...,n} into K folds A; U--- U Ak
o Fit model fi_a, = A({(X,-, i) iefl,. .., n}\Ak})
e For i € Ay define S; = |Y; — [i_a, (X))]

e Prediction set
C(Xnt1) = |:_Quant”e(1—a)(1+1/n)({_ﬁ—Ak(XnJrl)‘i'Si})a

Quantiley_ay(1+1/m ({A-a, (Xnt1) + Si})]
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Cross-conformal prediction

CV+ is related to a more general method:
Cross-conformal prediction'®

e Partition {1,...,n} into K folds A; U--- U Ak

e Fit score function s(k) = .A({(X,-7 Yi):ie{1,..., n}\Ak}>
e For i € Ay define S; = s(k)(X,-, Y:)

e Prediction set

K
CXnr1) =Sy eV:> > 1{S =M (Xpi1,y)} = a(n+1)
k=1 icAy

BVovk 2015, Cross-conformal predictors

4Vovk et al 2018, Cross-conformal predictive distributions



Relating cross-conformal & CV+

For the residual score function s(x,y) = |y — u(x)|,
Ccross-conf.(Xn+1) g CCV+(Xn+1)

Comparison:

e Cross-conformal is more flexible (can use any score function)

e CV+ always returns an interval (by construction)



Theory for cross-conformal & CV+

Theorem: coverage for CV+ and cross-conformal
If Z1,...,2Z,41 arei.id., and A is symmetric,
then K-fold cross-conformal satisfies

1-2a—-2/K

P{Ynt1 € C(Xn41)} 2
! ! 1-2a—2K/n 1
As a special case, the same is true for K-fold CV+.

= For any K,

P{Y,H_]_ S C(Xn+1)} 2 1—2a—

=

158, Candes, Ramdas, Tibshirani 2019, Predictive inference with the Jjackknife+

16\/ovk et al 2018, Cross-conformal predictive distributions



Conformal methods vs model-based
methods




Conformal or classical?

In a practical application....

Should we use a model?

e Model is probably a good approximation
e Obtain more precise answers

e But, may lose coverage if assumptions don't hold

Should we use conformal prediction?

e Coverage doesn't depend on assumptions
e But, coverage guarantee is only marginal

e Would we get wider intervals (less informative)?



Conformal or classical?

Answer: use both, & get the best of both worlds!

Conformal prediction is a family of methods

e Choosing a score specifies a particular method

e Can incorporate models / assumptions into the score



The conformal score: examples

Recall....
@ The residual score: s(x,y) = |y — u(x)]

@® The scaled residual score:!”

)y =70

s(x,y 500 where 1, o fitted on pretraining data

(figure from Lei et al 2018)

17Lei et al 2018, Distribution-Free Predictive Inference for Regression
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The conformal score: examples

© Conformalized quantile regression:'®

s(x,y) = max{y — i(x), Yo(x) — y}
where 70, Vi fitted on pretraining data
——

estimated quantiles of Y|X

— C(Xn+1) - [:Y\Io(Xn-i—l) - CAh /’?hi(Xn—&-l) + /q\]

18Romano et al 2019, Conformalized quantile regression



The conformal score: examples

© Conformalized quantile regression:'®

s(x,y) = max{y — i(x), Yo(x) — y}
where 70, Vi fitted on pretraining data
——

estimated quantiles of Y|X

— C(Xn+1) - [:Y\Io(Xn-i—l) - 57 /’?hi(Xn—&-l) + a]

Compare to residual score:

Observations — Predicted low and high quantiles
CQR: prediction interval

6 == Predicted value

tion interval

. 4

> 2 S L % Lot 2
= nw 540 4 SRROWEIRET
= Cabar
. e LA CRRIA R "
- -2
3 T 3 3 T T 3 1 2 3 3 3
M x

(figure from Romano et al 2019)

18Romano et al 2019, Conformalized quantile regression



The conformal score: examples

O Distributional conformal prediction:*°

s(x,y) = ’/?(y|x)—0.5‘ where l/-'\(|x) is fitted on pretraining data
~——

estimated conditional CDF
of Y given X = x

= C(Xnp1) = [F*l(oa — G [Xos1), FLO5+ G \xn+1)]

19Chernozhukov et al 2019, Distributional conformal prediction



The conformal score: examples

@ The high-density score:*°

~ ~

s(x,y) = —f(y|x) where f(-|x) is fitted on pretraining data

estimated conditional density
of Y given X = x

— C(Xo1) = {y €V Fly|Xps1) > -}

20| zbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators



The conformal score: examples

If the response Y is categorical, with values YV = {y1,...,yx}—
® The high-probability score:

s(x, yk) = —pk(x) where py(x) is fitted on pretraining data
——

estimate of P{Y =y, | X = x}

= C(Xns1) = {¥k : Pc(Xny1) > —3}

prediction set

prediction set

-
B
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|

|

i

I

B

(1]

1]
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Model-based theory for conformal

A general recipe:

e Suppose that if our model is correct,
the “oracle” answer can be written in the form

C*(Xny1) = {y : " (Xny1,y) < g}



Model-based theory for conformal

A general recipe:

e Suppose that if our model is correct,
the “oracle” answer can be written in the form

C*(Xny1) = {y : " (Xny1,y) < g}

e Compare to the split conformal prediction set:
C(Xn+l) = {y : S(XnJrlaY) < 5}
~ for conformal to approximate the oracle, need

s~s*and g~ q"



Model-based theory for conformal

A general recipe:

e Suppose that if our model is correct,
the “oracle” answer can be written in the form

C*(Xny1) = {y : " (Xny1,y) < g}

e Compare to the split conformal prediction set:
C(Xn+1) = {y : s(Xn+1,¥) < q}
~ for conformal to approximate the oracle, need
s~s"and g~ q*

S N

relies on fitting a good model relies on concentration of quantiles
using the pretraining data for calibration set scores



Model-based theory for conformal: examples

@ If the true model is Y = p(X) + € where € 1L X is symmetric
& unimodal noise,

C*(Xn+1) = ,u(X,,_H) + Quantilel_a(]d)
={y : s"(Xnt1,y) < Quantile;_o(|e])}

for s*(x,y) = ly — u(x)|

21| ¢j et al 2018, Distribution-Free Predictive Inference for Regression



Model-based theory for conformal: examples

@ If the true model is Y = p(X) + € where € 1L X is symmetric
& unimodal noise,

C*(Xn+1) = ,u(X,,_H) + Quantilel_a(]d)
={y : s"(Xnt1,y) < Quantile;_o(|e])}

for s*(x,y) = ly — p(x)|
— if we use the residual score, and if ;i — p, then®!

C(Xnt1) = C*(Xpy1) as n — o0

21| ¢j et al 2018, Distribution-Free Predictive Inference for Regression



Model-based theory for conformal: examples

® In the regression setting, suppose we would like an
equal-tailed, conditional coverage guarantee.

true quantiles of Y | X

Then the optimal set is
C*(Xn-‘rl) = [7&/2(Xn+1)7’Ylfa/2(Xn+1)]

22, . ) . . N .
““Romano et al 2019, Conformalized quantile regression; Sesia & Candes 2020, A comparison of some conformal
quantile regression methods



Model-based theory for conformal: examples

® In the regression setting, suppose we would like an
equal-tailed, conditional coverage guarantee.

true quantiles of Y | X

Then the optimal set is
C*(Xn-‘rl) = [7&/2(Xn+1)7’Ylfa/2(Xn+1)]

Can rewrite as
C*(Xnt1) = {y : s"(Xny1,y) <0}

where s*(x,y) = max {y — v1_a/2(x), Ya/2(x) — v}

22Romano et al 2019, Conformalized quantile regression; Sesia & Candes 2020, A comparison of some conformal
quantile regression methods
61/65



Model-based theory for conformal: examples

® In the regression setting, suppose we would like an
equal-tailed, conditional coverage guarantee.

true quantiles of Y | X

Then the optimal set is

C*(Xnt1) = [Vay2(Xnt1), 11—a/2(Xnt1)]

Can rewrite as
C*(Xn+1) = {y 5 5*(Xn+1a)/) < 0}
where s*(x,y) = max {y — v1_a/2(x), Ya/2(x) — v}

If Flo = Yay2 and Fni = M—a/2."

C(Xn+1) = C*(Xp+1) as n — o0

22Romano et al 2019, Conformalized quantile regression; Sesia & Candes 2020, A comparison of some conformal
quantile regression methods

61/65



Model-based theory for conformal: examples

© In the categorical setting, with conditional PMF p(y | x) —
smallest possible prediction set with marginal coverage is

C*(Xny1) ={y : ply | x) > t}
={y :s"(x,y) < —t} where s*(x,y) = —p(y | x)

— if we use the high-probability score, & p — p, then®?

C(Xn+1) = C*(Xp+1) as n — o0

ZSSadm\e et al 2019, Least ambiguous set-valued classifiers with bounded error levels



Model-based theory for conformal

Theorem (informal): asymptotic results for split CP**
Assume Zy, 2>, ... are i.i.d., & the data split satisfies ng, n; — oc.
If s, — s*, then

IC(Xnt1) ACT (Xnta) = O

24Duchi et al 2024, Predictive inference in multi-environment scenarios; Angelopoulos, B., Bates 2024, Theoretical
Foundations of Conformal Prediction



Summary




Summary: part 1

e Conformal allows us to start with any algorithm,
& calibrate it to achieve (marginal) predictive coverage

e Tradeoff between statistical & computational efficiency:
Split CP, full CP, and CV-based versions

e Conformal + model-based methods ~~ “best of both worlds”



In part 2, we will ask if conformal can be extended to handle:
e The streaming-data setting
e Distribution shift & distribution drift
e Conditional coverage rather than only marginal coverage

e & other extensions
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