An introduction to conformal prediction and distribution-free inference CIRM tutorial (part 1)

Rina Foygel Barber (University of Chicago) CIRM December 2024

http://rinafb.github.io/

Introduction

Supervised learning setting:

Training data $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$

Goals:

- Inference on the regression model distribution of Y given X
- Predictive inference predict value of Y given X for test points (X_{n+1}, Y_{n+1}), (X_{n+2}, Y_{n+2}),...

Regression & prediction — classical approach

• We assume a parametric model on (X, Y) or on $Y \mid X$

• We perform estimation & inference on the parameters....

•& then we can provide prediction intervals:

Regression & prediction — classical approach

• We assume a parametric model on (X, Y) or on $Y \mid X$

e.g., for linear regression, $Y = X^{\top}\beta + \mathcal{N}(0, \sigma^2)$

• We perform estimation & inference on the parameters.... e.g., for linear regression, distribution of $\hat{\beta}$ and $\hat{\sigma}^2$

•& then we can provide prediction intervals:

e.g., for linear regression, $Y_{n+1} \in X_{n+1}^{\top} \hat{\beta} \pm \dots$

Regression & prediction — nonparametric approach

• We allow a nonparametric model for (X, Y) or Y | X, with assumptions/constraints

• We perform estimation & inference on the model....

•& then we can provide prediction intervals:

Regression & prediction — nonparametric approach

• We allow a nonparametric model for (X, Y) or Y | X, with assumptions/constraints

e.g., assume $\mathbb{E}[Y \mid X]$ is smooth

• We perform estimation & inference on the model....

e.g., $\widehat{\mu}(x) =$ estimate of $\mathbb{E}[Y \mid X = x]$, via a Gaussian kernel

•& then we can provide prediction intervals:

e.g., $Y_{n+1} \in \widehat{\mu}(X_{n+1}) \pm \dots$

Regression & prediction — ML approach

• Train an overparametrized model for $Y \mid X$

• Provide predictions for new feature vectors

• Use a data-driven strategy for uncertainty quantification

Regression & prediction — ML approach

• Train an overparametrized model for $Y \mid X$

```
e.g., train a neural net on \{(X_i, Y_i)\}
```

• Provide predictions for new feature vectors

e.g., \widehat{Y}_{n+i} = neural net's prediction for feature X_{n+i}

Use a data-driven strategy for uncertainty quantification
 e.g., holdout data / cross-validation / bootstrapping / etc

What can go wrong?

- For the parametric approach our model may be wrong
- For the nonparametric approach our assumptions (e.g., smoothness) may not hold
- For the ML approach is data-driven inference guaranteed to give valid answers?

Our choices:

- Rely on assumptions being correct
- Or, test empirically whether our assumptions hold
- Or, use inference methods that don't rely on assumptions (or, only rely on weaker assumptions)

Setting:

- Features $X \in \mathcal{X}$, response $Y \in \mathbb{R}$ (or $Y \in \mathcal{Y}$)
- Available training data $(X_1, Y_1), \ldots, (X_n, Y_n) \rightsquigarrow$ fit model $\widehat{\mu}$
- Goal: given X_{n+1}, X_{n+2}, \ldots , predict Y_{n+1}, Y_{n+2}, \ldots

Setting:

- Features $X \in \mathcal{X}$, response $Y \in \mathbb{R}$ (or $Y \in \mathcal{Y}$)
- Available training data $(X_1, Y_1), \ldots, (X_n, Y_n) \rightsquigarrow$ fit model $\widehat{\mu}$
- Goal: given X_{n+1}, X_{n+2}, \ldots , predict Y_{n+1}, Y_{n+2}, \ldots

Prediction? or predictive inference? $\widehat{Y}_{n+i} = \widehat{\mu}(X_{n+i})$ $Y_{n+i} \in \widehat{\mu}(X_{n+i}) \pm (margin of error)$ Using the training loss:

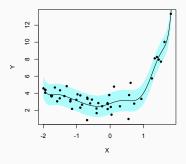
If fitted model $\widehat{\mu}$ overfits to training data, generally

even if training & test data are from the same distribution

Regression & prediction — data-driven predictive inference

Simulation: suppose we construct prediction intervals as

$$\mathcal{C}(X_{n+i}) = \widehat{\mu}(X_{n+i}) \pm \text{Quantile}_{1-\alpha}(|Y_1 - \widehat{\mu}(X_1)|, \dots, |Y_n - \widehat{\mu}(X_n)|)$$
residuals on training data



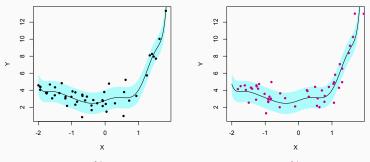
Train: 90% coverage

Regression & prediction — data-driven predictive inference

Simulation: suppose we construct prediction intervals as

$$\mathcal{C}(X_{n+i}) = \widehat{\mu}(X_{n+i}) \pm \text{Quantile}_{1-\alpha}(|Y_1 - \widehat{\mu}(X_1)|, \dots, |Y_n - \widehat{\mu}(X_n)|)$$

residuals on training data



Train: 90% coverage

Test: 78% coverage

To avoid overfitting — use a holdout set ("calibration set")

- Split the training data, $n = n_0 + n_1$
- Fit model $\widehat{\mu}$ on pretraining set $\{(X_i, Y_i)\}_{1 \le i \le n_0}$
- Compute residuals on calibration set, $\{|Y_i \hat{\mu}(X_i)|\}_{n_0 < i \le n}$
- Prediction interval:

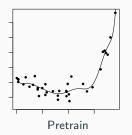
 $\mathcal{C}(X_{n+i}) = \widehat{\mu}(X_{n+i}) \pm \mathsf{Quantile}_{1-\alpha}(\{|Y_i - \widehat{\mu}(X_i)|\}_{n_0 < i \le n})$

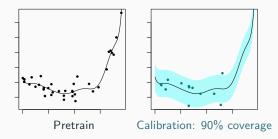
To avoid overfitting — use a holdout set ("calibration set")

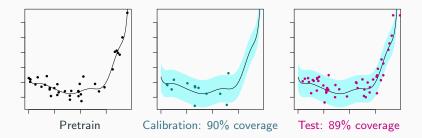
- Split the training data, $n = n_0 + n_1$
- Fit model $\widehat{\mu}$ on pretraining set $\{(X_i, Y_i)\}_{1 \le i \le n_0}$
- Compute residuals on calibration set, $\{|Y_i \hat{\mu}(X_i)|\}_{n_0 < i \le n}$
- Prediction interval:

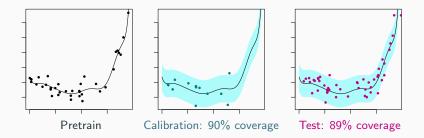
$$C(X_{n+i}) = \widehat{\mu}(X_{n+i}) \pm \text{Quantile}_{1-\alpha}(\{|Y_i - \widehat{\mu}(X_i)|\}_{n_0 < i \le n})$$

$$\overleftarrow{}$$
fitted on pretraining data computed on calibration data









Note: lower sample size $\rightsquigarrow \widehat{\mu}$ is less accurate \rightsquigarrow intervals are wider

- The naive method fits a more accurate $\widehat{\mu},$ but the margin of error is too small due to overfitting
- A holdout set method fits a less accurate μ̂, but the margin of error is correctly calibrated
- Can we use cross-validation (CV) to get the best of both? Will return to this!

The goal of distribution-free inference is to provide guarantees that are valid universally over all data distributions.

For the problem of predictive inference...

• Can we construct a prediction interval $\mathcal{C}(X_{n+i}) \subseteq \mathcal{Y}$ such that

 $\mathbb{P}\left\{Y_{n+i}\in\mathcal{C}(X_{n+i})\right\}\geq 1-\alpha ?$

The goal of distribution-free inference is to provide guarantees that are valid universally over all data distributions.

For the problem of predictive inference...

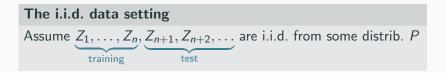
• Can we construct a prediction interval $\mathcal{C}(X_{n+i}) \subseteq \mathcal{Y}$ such that

$$\mathbb{P}\left\{Y_{n+i}\in\mathcal{C}(X_{n+i})\right\}\geq 1-\alpha ?$$

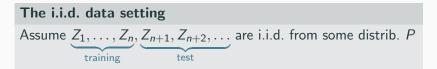
- Want to avoid overly conservative solutions $(\mathcal{C}(X_{n+1}) = \mathcal{Y})$
- Want to be able to use *any* regression method to construct *C* (classical or ML methods)

Intro to exchangeability

For the rest of this talk: let $Z_i = (X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$



For the rest of this talk: let $Z_i = (X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$



Can we call this "distribution-free"?

- No assumptions on P (e.g., P does not need to be smooth)
- But, this does not allow for dependence across time / distribution shift / etc
- We will return to these settings later

The exchangeable data setting

Assume that the data points

$$\underbrace{Z_1,\ldots,Z_n}_{\text{training}},\underbrace{Z_{n+1},Z_{n+2},\ldots}_{\text{test}}$$

are exchangeable, i.e., $(Z_1, \ldots, Z_m) \stackrel{d}{=} (Z_{\sigma(1)}, \ldots, Z_{\sigma(m)})$ for every *m* and every permutation σ .

- The i.i.d. data setting is a special case
- Conditionally i.i.d. data is another special case
- Note: finite sequences can be exchangeable but not i.i.d. (de Finetti's theorem does not apply)

Background on conformal prediction

Background on the conformal prediction (CP) framework: key idea = statistical inference via exchangeability of the data

Gammerman, Vovk, Vapnik UAI 1998

Vovk, Gammerman, Shafer 2005 — see alrw.net

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman JASA 2018

Conformal prediction: background

Recent developments — software packages & user-friendly tutorials

& a new theory textbook (75% on arXiv, forthcoming from CUP)

Theoretical Foundations of Conformal Prediction

Anastasios N. Angelopoulos¹, Rina Foygel Barber², Stephen Bates³

Recent developments — successful applications in biological sciences, machine learning, & many more domains



Split conformal prediction

Split conformal prediction

The split conformal prediction method

• Using pretraining data Z_1, \ldots, Z_{n_0} , construct fitted model $\hat{\mu}$ using any regression algorithm:

$$\widehat{\mu} = \mathcal{A}(Z_1, \ldots, Z_{n_0})$$

2 Compute quantile \hat{q} of calibration set residuals:

$$\widehat{q} = \mathsf{Quantile}_{(1-\alpha)(1+1/n_1)} \Big(\{ |Y_i - \widehat{\mu}(X_i)| \}_{n_0 < i \le n} \Big)$$

③ For test point n + 1 return prediction interval

$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q}$$

Split conformal prediction

Theorem¹

If Z_1, \ldots, Z_{n+1} are exchangeable, then split conformal satisfies:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

¹Vovk et al 2005, Algorithmic Learning in a Random World

Theorem¹

If Z_1, \ldots, Z_{n+1} are exchangeable, then split conformal satisfies:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

Proof:

Define
$$S_i = |Y_i - \hat{\mu}(X_i)|$$
 for $i = \underbrace{n_0 + 1, \dots, n}_{\text{calibration}}, \underbrace{n+1}_{\text{test}}$

¹Vovk et al 2005, Algorithmic Learning in a Random World

Theorem¹

If Z_1, \ldots, Z_{n+1} are exchangeable, then split conformal satisfies:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

Proof:

Define $S_i = |Y_i - \hat{\mu}(X_i)|$ for $i = \underbrace{n_0 + 1, \dots, n}_{\text{calibration}}, \underbrace{n+1}_{\text{test}}$

 $Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \leq \mathsf{Quantile}_{(1-\alpha)(1+1/n_1)}(S_{n_0+1}, \dots, S_n)$

¹Vovk et al 2005, Algorithmic Learning in a Random World

Theorem¹

If Z_1, \ldots, Z_{n+1} are exchangeable, then split conformal satisfies:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

Proof:

Define
$$S_i = |Y_i - \hat{\mu}(X_i)|$$
 for $i = \underbrace{n_0 + 1, \dots, n}_{\text{calibration}}, \underbrace{n+1}_{\text{test}}$

$$\begin{aligned} Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} &\leq \mathsf{Quantile}_{(1-\alpha)(1+1/n_1)}(S_{n_0+1}, \dots, S_n) \\ \iff S_{n+1} &\leq \mathsf{Quantile}_{1-\alpha}(S_{n_0+1}, \dots, S_n, S_{n+1}) \end{aligned}$$

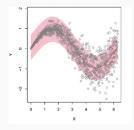
¹Vovk et al 2005, Algorithmic Learning in a Random World

Exchangeability for holdout set methods If $\hat{\mu} = \mathcal{A}(Z_1, \dots, Z_{n_0})$, & the data points are exchangeable, then $\underbrace{|Y_{n_0+1} - \hat{\mu}(X_{n_0+1})|, \dots, |Y_n - \hat{\mu}(X_n)|}_{\text{calibration residuals}}, \underbrace{|Y_{n+1} - \hat{\mu}(X_{n+1})|}_{\text{test residual}}$ are exchangeable.

Exchangeability for holdout set methods If $\hat{\mu} = \mathcal{A}(Z_1, \dots, Z_{n_0})$, & the data points are exchangeable, then $\underbrace{|Y_{n_0+1} - \hat{\mu}(X_{n_0+1})|, \dots, |Y_n - \hat{\mu}(X_n)|}_{\text{calibration residuals}}, \underbrace{|Y_{n+1} - \hat{\mu}(X_{n+1})|}_{\text{test residual}}$ are exchangeable.

$$\implies \mathbb{P}\left\{S_{n+1} \leq \mathsf{Quantile}_{1-\alpha}(S_{n_0+1}, \dots, S_n, S_{n+1})\right\} \geq 1-\alpha$$

Due to the construction of the split conformal method, $C(X_{n+1})$ has the same width regardless of the value of X_{n+1}

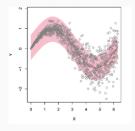


(figure from Lei et al 2018)

Why?

•
$$\mathcal{C}(X_{n+1}) = \left[\widehat{\mu}(X_{n+1}) \pm \widehat{q} \right] = \{ y \in \mathbb{R} : |y - \widehat{\mu}(X_{n+1})| \le \widehat{q} \}$$

Due to the construction of the split conformal method, $C(X_{n+1})$ has the same width regardless of the value of X_{n+1}



(figure from Lei et al 2018)

Why?

- $\mathcal{C}(X_{n+1}) = \left[\widehat{\mu}(X_{n+1}) \pm \widehat{q} \right] = \{ y \in \mathbb{R} : |y \widehat{\mu}(X_{n+1})| \le \widehat{q} \}$
- Equivalently: we are using |y µ(X_{n+1})| as a score to determine whether y is contained in C(X_{n+1}) or not

22/65

The split conformal prediction method² (general score)

• Using pretraining data Z_1, \ldots, Z_{n_0} , construct score function $s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ using any algorithm

2 Compute quantile \hat{q} of calibration set scores:

$$\widehat{q} = \mathsf{Quantile}_{(1-\alpha)(1+1/n_1)}(S_{n_0+1},\ldots,S_n)$$

where $S_i = s(X_i, Y_i)$

③ For test point n + 1 return prediction interval

$$\mathcal{C}(X_{n+1}) = \{y \in \mathcal{Y} : s(X_{n+1}, y) \leq \widehat{q}\}$$

²Vovk et al 2005, Algorithmic Learning in a Random World

The residual score:

 $s(x,y) = |y - \widehat{\mu}(x)|$, where $\widehat{\mu}$ fitted on pretraining data

$$\implies \mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q}$$

An alternative score function — (will see more examples later on)

The scaled residual score:³

$$s(x,y) = \frac{|y - \widehat{\mu}(x)|}{\widehat{\sigma}(x)}, \text{ where } \widehat{\mu}, \ \widehat{\sigma} \text{ fitted on pretraining data}$$
$$\implies \mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q} \cdot \widehat{\sigma}(X_{n+1})$$

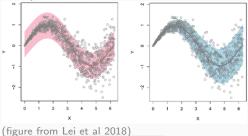
³Lei et al 2018, Distribution-Free Predictive Inference for Regression

An alternative score function — (will see more examples later on)

The scaled residual score:³

$$s(x,y) = \frac{|y - \widehat{\mu}(x)|}{\widehat{\sigma}(x)}, \text{ where } \widehat{\mu}, \ \widehat{\sigma} \text{ fitted on pretraining data}$$
$$\implies \mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q} \cdot \widehat{\sigma}(X_{n+1})$$

Compare to residual score:



³Lei et al 2018, Distribution-Free Predictive Inference for Regression

Split CP allows us to start with any pretrained model/score, and then calibrate it to have valid predictive coverage (as long as we can assume exchangeability!)

Drawback: model $\hat{\mu}$ (or score s) less accurate due to data splitting

Intuition—

- Split CP fits $\widehat{\mu}$ to part of the data, to ensure S_i 's are exch.
- Full CP: use all the data for fitting $\hat{\mu}$ and ensure S_i 's are exch.

Intuition—

- Split CP fits $\widehat{\mu}$ to part of the data, to ensure S_i 's are exch.
- Full CP: use all the data for fitting $\hat{\mu}$ and ensure S_i 's are exch.

An additional assumption:

The symmetric algorithm assumption For any Z_1, \ldots, Z_m and any $\sigma \in S_m$,

$$\mathcal{A}(Z_1,\ldots,Z_m)=\mathcal{A}(Z_{\sigma(1)},\ldots,Z_{\sigma(m)}).$$

Full CP, oracle version: imagine we could observe Y_{n+1}

• Fit model to training+test data

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$$

• Compute residuals

$$S_i = |Y_i - \widehat{\mu}(X_i)|, \ i = 1, \dots, n; \ S_{n+1} = |Y_{n+1} - \widehat{\mu}(X_{n+1})|$$

• Check if $S_{n+1} \leq \text{Quantile}_{(1-\alpha)(1+1/n)}(S_1, \dots, S_n)$

Full CP, oracle version: imagine we could observe Y_{n+1}

• Fit model to training+test data

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$$

Compute residuals

$$S_i = |Y_i - \widehat{\mu}(X_i)|, \ i = 1, \dots, n; \ S_{n+1} = |Y_{n+1} - \widehat{\mu}(X_{n+1})|$$

• Check if $S_{n+1} \leq \text{Quantile}_{(1-\alpha)(1+1/n)}(S_1, \ldots, S_n)$

If data points are exchangeable, and \mathcal{A} is symmetric, then S_1, \ldots, S_{n+1} are exchangeable \Rightarrow this event has $\geq 1 - \alpha$ probability

Running full conformal in practice:

• Fit model to training+test data

$$\begin{split} \widehat{\mu}^{\mathcal{Y}} &= \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, \mathbf{y})) \\ \bullet & \text{Compute residuals} \\ & S_i^{\mathcal{Y}} &= |Y_i - \widehat{\mu}^{\mathcal{Y}}(X_i)|, \ i = 1, \dots, n, \quad S_{n+1}^{\mathcal{Y}} = |\mathbf{y} - \widehat{\mu}^{\mathcal{Y}}(X_{n+1}) \\ \bullet & \text{Check if } S_{n+1}^{\mathcal{Y}} \leq \text{Quantile}_{(1-\alpha)(1+1/n)}(S_1^{\mathcal{Y}}, \dots, S_n^{\mathcal{Y}}) \end{split}$$

Running full conformal in practice:

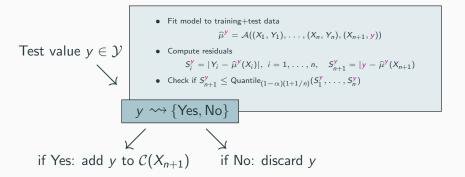
• Fit model to training+test data

$$\widehat{\mu}^{y} = \mathcal{A}((X_{1}, Y_{1}), \dots, (X_{n}, Y_{n}), (X_{n+1}, y))$$
• Compute residuals

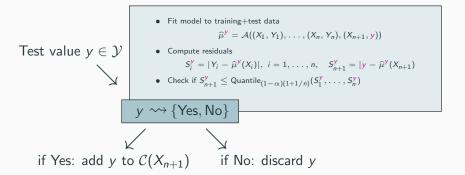
$$S_{i}^{y} = |Y_{i} - \widehat{\mu}^{y}(X_{i})|, \ i = 1, \dots, n, \quad S_{n+1}^{y} = |y - \widehat{\mu}^{y}(X_{n+1})$$
• Check if $S_{n+1}^{y} \leq \text{Quantile}_{(1-\alpha)(1+1/n)}(S_{1}^{y}, \dots, S_{n}^{y})$

$$y \nleftrightarrow \{\text{Yes, No}\}$$

Running full conformal in practice:



Running full conformal in practice:



Note: split CP can be viewed as a special case of full CP: \mathcal{A} returns a *pretrained* model $\hat{\mu}$ — doesn't depend on data

Theorem: full conformal⁴

If Z_1, \ldots, Z_{n+1} are exchangeable, and \mathcal{A} is symmetric, then full conformal prediction satisfies

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

Proof:

1 Need to verify $Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \leq \text{Quantile}_{1-\alpha}(S_1, \dots, S_n, S_{n+1})$ 2 Need to verify that S_1, \dots, S_n, S_{n+1} are exchangeable

⁴Vovk et al 2005, Algorithmic Learning in a Random World

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \Longleftrightarrow S_{n+1} \leq \mathsf{Quantile}_{1-\alpha}(S_1, \ldots, S_n, S_{n+1})$$

By construction,

If
$$y = Y_{n+1} \rightsquigarrow S_i^y = S_i$$
 for all $i = 1, ..., n+1$
 $Y_{1}, ..., (X_n, Y_n), (X_{n+1}, y)$
train \mathcal{A} on $(X_1, Y_1), ..., (X_n, Y_n), (X_{n+1}, Y_{n+1})$

train \mathcal{A} on $(X_1,$

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \Longleftrightarrow S_{n+1} \leq \mathsf{Quantile}_{1-\alpha}(S_1, \ldots, S_n, S_{n+1})$$

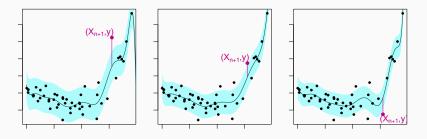
By construction,

train \mathcal{A} on

If
$$y = Y_{n+1} \rightsquigarrow S_i^y = S_i$$
 for all $i = 1, ..., n+1$
 $(X_1, Y_1), ..., (X_n, Y_n), (X_{n+1}, y)$ train \mathcal{A} on $(X_1, Y_1), ..., (X_n, Y_n), (X_{n+1}, Y_{n+1})$

$$\begin{split} Y_{n+1} \in \mathcal{C}(X_{n+1}) &\iff S_{n+1}^{Y_{n+1}} \leq \mathsf{Quantile}_{(1-\alpha)(1+1/n)}(S_1^{Y_{n+1}}, \dots, S_n^{Y_{n+1}}) \\ &\iff S_{n+1} \leq \mathsf{Quantile}_{(1-\alpha)(1+1/n)}(S_1, \dots, S_n) \\ &\iff S_{n+1} \leq \mathsf{Quantile}_{1-\alpha}(S_1, \dots, S_n, S_{n+1}) \end{split}$$

How full conformal is run:



• $\widehat{\mu}$ needs to be refitted for each X_{n+1} & each possible y

Full CP can be run with any conformal score function New definition of an algorithm:

 \mathcal{A} maps a data set to a score function $s: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$.

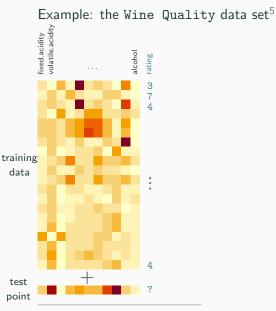
Full conformal prediction (general score)

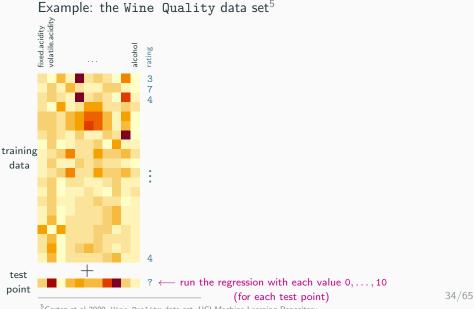
$$\mathcal{C}(X_{n+1}) = \left\{ y \in \mathcal{Y} : S_{n+1}^{y} \leq \mathsf{Quantile}_{(1-\alpha)(1+1/n)} \left(S_{1}^{y}, \dots, S_{n}^{y} \right) \right\}$$

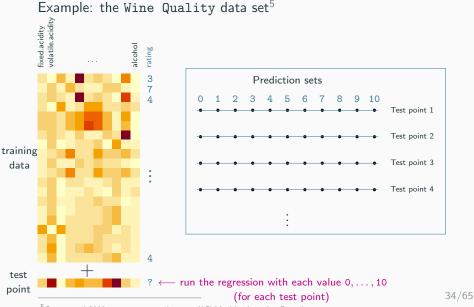
where

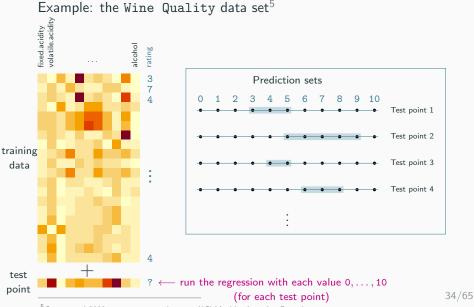
$$S_i^y = s^y(X_i, Y_i), i = 1, ..., n, \quad S_{n+1}^y = s^y(X_{n+1}, y),$$

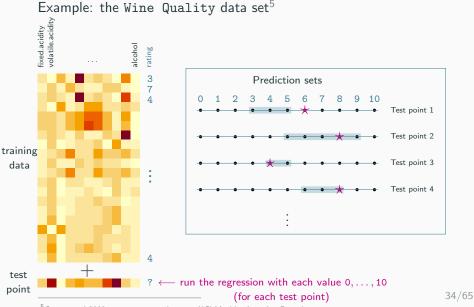
for fitted score function $s^y = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y))$











For a real-valued response...

• Running full CP requires refitting model for *every* value $y \in \mathbb{R}$

For a real-valued response...

• Running full CP requires refitting model for *every* value $y \in \mathbb{R}$

Summary of approaches used in practice:

- Most common restrict to a grid of y values (but no theory)
- Can use a discretized version of \mathcal{A} to restore theory⁶
- Specialized methods for specific algorithms/settings, e.g., Ridge,⁷ Lasso,⁸ stable algorithms⁹

⁶Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference

⁷Burnaev & Vovk 2014, Efficiency of conformalized ridge regression

⁸Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

⁹Ndiaye 2022, Stable Conformal Prediction Sets

Recall theoretical guarantee for split CP & full CP:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - \alpha$$

Limitations:

- Coverage is *marginal*, may not hold conditional on X_{n+1} what if we undercover for certain subpopulations?
- Requires exchangeability what if there is distribution drift?
- Full CP requires symmetric ${\cal A}$

See Part 2 for some methods to address these limitations

Conformal + CV

Summarizing different methods:

- Split CP fits $\widehat{\mu}$ to part of the data \leadsto distrib.-free theory
- Full CP: use all the data for $\widehat{\mu}$ and achieves distrib.-free theory, but computationally very expensive
- Can cross-validation based methods offer a compromise?

Using cross-validation for inference

Leave-one-out CV (the "jackknife"):

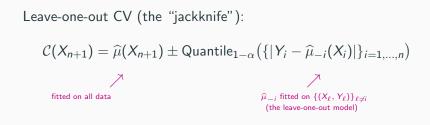
$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \mathsf{Quantile}_{1-\alpha}\big(\{|Y_i - \widehat{\mu}_{-i}(X_i)|\}_{i=1,\dots,n}\big)$$

$$\nearrow$$

fitted on all data

 $\widehat{\mu}_{-i} \text{ fitted on } \{(X_{\ell}, Y_{\ell})\}_{\ell \neq i}$ (the leave-one-out model)

Using cross-validation for inference

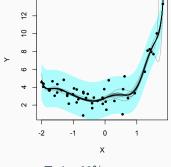


More computationally efficient: K-fold CV

- Partition $\{1, \ldots, n\} = A_1 \cup \cdots \cup A_K$, with $|A_k| = n/K$
- Fit models $\widehat{\mu}_{-A_k}$ to data $\{(X_i, Y_i)\}_{i \notin A_k}$
- Compute the margin of error using residuals

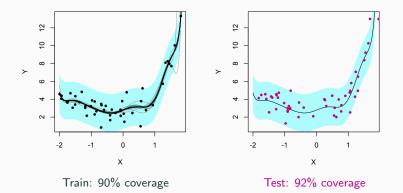
$$\left\{\left|Y_{i}-\widehat{\mu}_{-A_{k}}(X_{i})\right|\right\}_{k=1,\ldots,K;i\in A_{k}}$$

Leave-one-out CV: simulation



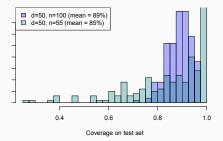
Train: 90% coverage

Leave-one-out CV: simulation



Using cross-validation for inference

However, no assumption-free theory for CV... Example: least squares regression + jackknife



- Theoretical guarantees under asymptotic settings
- In practice, generally we see $\approx 1 \alpha$ coverage, but unstable models may lead to undercoverage

Why does distribution-free theory hold for split CP but not for CV?

$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q} \quad \rightsquigarrow \text{ coverage if } \underbrace{|Y_{n+1} - \widehat{\mu}(X_{n+1})|}_{=S_{n+1}} \leq \widehat{q}$$

Why does distribution-free theory hold for split CP but not for CV?

$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q} \quad \rightsquigarrow \text{ coverage if } \underbrace{|Y_{n+1} - \widehat{\mu}(X_{n+1})|}_{=S_{n+1}} \leq \widehat{q}$$

• For split conformal, \widehat{q} is quantile of calibration residuals

$$S_i = |Y_i - \widehat{\mu}(X_i)|, \ i = n_0 + 1, \dots, n$$

and $\widehat{\mu}$ is pretrained $\Rightarrow S_{n_0+1}, \dots, S_n, S_{n+1}$ are exchangeable

Why does distribution-free theory hold for split CP but not for CV?

$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \widehat{q} \quad \rightsquigarrow \text{ coverage if } \underbrace{|Y_{n+1} - \widehat{\mu}(X_{n+1})|}_{=S_{n+1}} \leq \widehat{q}$$

• For split conformal, \widehat{q} is quantile of calibration residuals

$$S_i = |Y_i - \widehat{\mu}(X_i)|, \ i = n_0 + 1, \dots, n$$

and $\widehat{\mu}$ is pretrained \Rightarrow $S_{n_0+1}, \ldots, S_n, S_{n+1}$ are exchangeable

• For jackknife, \hat{q} is quantile of leave-one-out residuals

$$S_i = |Y_i - \widehat{\mu}_{-i}(X_i)|, \ i = 1, \dots, n$$

 \Rightarrow $S_1, \ldots, S_n, S_{n+1}$ are *not* exchangeable

Jackknife:
$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \text{Quantile}_{1-\alpha}(S_i)$$

Jackknife can equivalently be defined as: $C(X_{n+1}) = \left[\text{Quantile}_{\alpha}(\widehat{\mu}(X_{n+1}) - S_i), \text{Quantile}_{1-\alpha}(\widehat{\mu}(X_{n+1}) + S_i) \right]$

Jackknife:
$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Quantile_{1-\alpha}(S_i)$$

Jackknife can equivalently be defined as:

$$\mathcal{C}(X_{n+1}) = \begin{bmatrix} \mathsf{Quantile}_{\alpha}(\widehat{\mu}(X_{n+1})/\#/S_{i}), \mathsf{Quantile}_{1-\alpha}(\widehat{\mu}(X_{n+1}) + S_{i}) \\ -\mathsf{Quantile}_{1-\alpha}(-\widehat{\mu}(X_{n+1}) + S_{i}) \end{bmatrix}$$

Jackknife:
$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Quantile_{1-\alpha}(S_i)$$

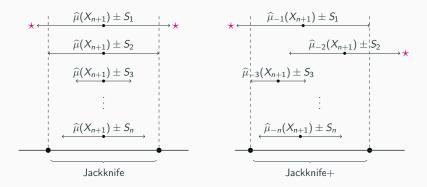
Jackknife can equivalently be defined as: $C(X_{n+1}) = \begin{bmatrix} Quantile_{\alpha}(\widehat{\mu}(X_{n+1})/\#/S_{n}), Quantile_{1-\alpha}(\widehat{\mu}(X_{n+1}) + S_{i}) \\ -Quantile_{1-\alpha}(-\widehat{\mu}(X_{n+1}) + S_{i}) \end{bmatrix}$

A modified version of the method: the jackknife+.¹⁰

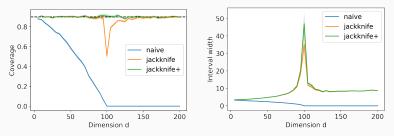
$$\mathcal{C}(X_{n+1}) = \left[-\operatorname{Quantile}_{(1-\alpha)(1+1/n)} \left(-\widehat{\mu}_{-i}(X_{n+1}) + S_i \right), \\ \operatorname{Quantile}_{(1-\alpha)(1+1/n)} \left(\widehat{\mu}_{-i}(X_{n+1}) + S_i \right) \right]$$

¹⁰B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

Jackknife & jackknife+



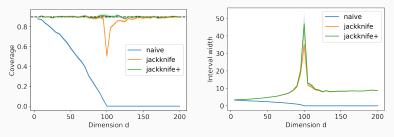
Jackknife & jackknife+



Empirical comparison (linear regression with n = 100):

• "Ridgeless" regression — minimum- ℓ_2 -norm solution, if d > n

Jackknife & jackknife+



Empirical comparison (linear regression with n = 100):

- "Ridgeless" regression minimum- ℓ_2 -norm solution, if d > n
- Note: ridgeless regression is stable except the $d \approx n$ regime¹¹

¹¹Hastie et al 2022, Surprises in High-Dimensional Ridgeless Least Squares Interpolation

Theorem: coverage for jackknife+¹²

If Z_1, \ldots, Z_{n+1} are exchangeable, and A is symmetric, then jackknife+ satisfies

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - 2\alpha$$

(In contrast, jackknife may have zero coverage, in the worst case)

¹²B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

To avoid computational cost of leave-one-out CV — K-fold CV (e.g., K = 5 or K = 10)

To avoid computational cost of leave-one-out CV — K-fold CV (e.g., K = 5 or K = 10)

- Partition $\{1, \ldots, n\}$ into K folds $A_1 \cup \cdots \cup A_K$
- Fit model $\widehat{\mu}_{-A_k} = \mathcal{A}\Big(\{(X_i, Y_i) : i \in \{1, \dots, n\} \setminus A_k\}\Big)$
- For $i \in A_k$ define $S_i = |Y_i \widehat{\mu}_{-A_k}(X_i)|$

$$\mathcal{C}(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm \mathsf{Quantile}_{1-\alpha}(S_1, \dots, S_n)$$

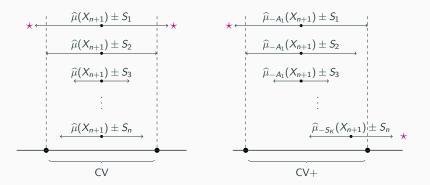
Generalize jackknife+ to the K-fold setting \rightsquigarrow CV+

K-fold CV+

- Partition $\{1, \ldots, n\}$ into K folds $A_1 \cup \cdots \cup A_K$
- Fit model $\widehat{\mu}_{-A_k} = \mathcal{A}\Big(\{(X_i, Y_i) : i \in \{1, \dots, n\} \setminus A_k\}\Big)$
- For $i \in A_k$ define $S_i = |Y_i \widehat{\mu}_{-A_k}(X_i)|$
- Prediction set

$$\mathcal{C}(X_{n+1}) = \left[-\text{Quantile}_{(1-\alpha)(1+1/n)} \left(\{ -\widehat{\mu}_{-A_k}(X_{n+1}) + S_i \} \right), \\ \text{Quantile}_{(1-\alpha)(1+1/n)} \left(\{ \widehat{\mu}_{-A_k}(X_{n+1}) + S_i \} \right) \right]$$

From leave-one-out to K-fold



$\mathsf{CV}+$ is related to a more general method:

Cross-conformal prediction^{13,14}

- Partition $\{1, \ldots, n\}$ into K folds $A_1 \cup \cdots \cup A_K$
- Fit score function $s^{(k)} = \mathcal{A}\Big(\{(X_i, Y_i) : i \in \{1, \dots, n\} \setminus A_k\}\Big)$

• For
$$i \in A_k$$
 define $S_i = s^{(k)}(X_i, Y_i)$

• Prediction set

$$\mathcal{C}(X_{n+1}) = \left\{ y \in \mathcal{Y} : \sum_{k=1}^{K} \sum_{i \in A_k} \mathbb{1}\{S_i \ge s^{(k)}(X_{n+1}, y)\} \ge \alpha(n+1) \right\}$$

¹³Vovk 2015, Cross-conformal predictors

¹⁴Vovk et al 2018, Cross-conformal predictive distributions

For the residual score function $s(x, y) = |y - \hat{\mu}(x)|$,

$$\mathcal{C}_{\text{cross-conf.}}(X_{n+1}) \subseteq \mathcal{C}_{\text{CV+}}(X_{n+1})$$

Comparison:

- Cross-conformal is more flexible (can use any score function)
- CV+ always returns an interval (by construction)

Theorem: coverage for CV+ and cross-conformal

If Z_1, \ldots, Z_{n+1} are i.i.d., and \mathcal{A} is symmetric, then *K*-fold cross-conformal satisfies

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \geq \begin{cases} 1 - 2\alpha - 2/K^{-15} \\ 1 - 2\alpha - 2K/n^{-16} \end{cases}$$

As a special case, the same is true for K-fold CV+.

 \implies For any K,

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}(X_{n+1})\right\} \ge 1 - 2\alpha - \frac{2}{\sqrt{n}}$$

¹⁵B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+ ¹⁶Vovk et al 2018, Cross-conformal predictive distributions

Conformal methods vs model-based methods

In a practical application....

Should we use a model?

- Model is probably a good approximation
- Obtain more precise answers
- But, may lose coverage if assumptions don't hold

Should we use conformal prediction?

- Coverage doesn't depend on assumptions
- But, coverage guarantee is only marginal
- Would we get wider intervals (less informative)?

Answer: use both, & get the best of both worlds!

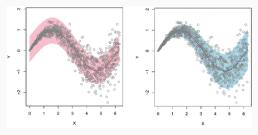
Conformal prediction is a *family* of methods

- Choosing a score specifies a particular method
- Can incorporate models / assumptions into the score

Recall....

- 1 The residual score: $s(x,y) = |y \widehat{\mu}(x)|$
- **2** The scaled residual score:¹⁷

 $s(x,y) = rac{|y - \widehat{\mu}(x)|}{\widehat{\sigma}(x)}$, where $\widehat{\mu}$, $\widehat{\sigma}$ fitted on pretraining data



(figure from Lei et al 2018)

¹⁷Lei et al 2018, Distribution-Free Predictive Inference for Regression

3 Conformalized quantile regression:¹⁸

$$s(x,y) = \max \{y - \widehat{\gamma}_{\mathsf{hi}}(x), \widehat{\gamma}_{\mathsf{lo}}(x) - y\}$$

where $\widehat{\gamma}_{lo}, \widehat{\gamma}_{hi}$ fitted on pretraining data estimated quantiles of Y|X

$$\implies \mathcal{C}(X_{n+1}) = [\widehat{\gamma}_{\mathsf{lo}}(X_{n+1}) - \widehat{q}, \ \widehat{\gamma}_{\mathsf{hi}}(X_{n+1}) + \widehat{q}]$$

¹⁸Romano et al 2019, Conformalized quantile regression

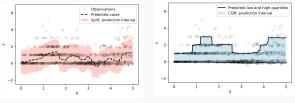
3 Conformalized quantile regression:¹⁸

$$s(x, y) = \max \{y - \widehat{\gamma}_{\mathsf{hi}}(x), \widehat{\gamma}_{\mathsf{lo}}(x) - y\}$$

where $\widehat{\gamma}_{lo}, \widehat{\gamma}_{hi}$ fitted on pretraining data estimated quantiles of Y|X

$$\implies \mathcal{C}(X_{n+1}) = [\widehat{\gamma}_{\mathsf{lo}}(X_{n+1}) - \widehat{q}, \ \widehat{\gamma}_{\mathsf{hi}}(X_{n+1}) + \widehat{q}]$$

Compare to residual score:



(figure from Romano et al 2019)

¹⁸Romano et al 2019, Conformalized quantile regression

4 Distributional conformal prediction:¹⁹

$$s(x,y) = \left|\widehat{F}(y|x) - 0.5\right| \text{ where } \underbrace{\widehat{F}(\cdot|x)}_{\substack{\text{estimated conditional CDF}\\ \text{of } Y \text{ given } X = x}}_{\substack{\text{stimated conditional CDF}}}$$

$$\implies C(X_{n+1}) = \left[\widehat{F}^{-1}(0.5 - \widehat{q} \mid X_{n+1}), \ \widehat{F}^{-1}(0.5 + \widehat{q} \mid X_{n+1})\right]$$

¹⁹Chernozhukov et al 2019, Distributional conformal prediction

5 The high-density score:²⁰

 $s(x,y) = -\widehat{f}(y|x)$ where $\widehat{f}(\cdot|x)$ is fitted on pretraining data estimated conditional density of Y given X = x

$$\implies \mathcal{C}(X_{n+1}) = \left\{ y \in \mathcal{Y} : \widehat{f}(y|X_{n+1}) \geq -\widehat{q} \right\}$$

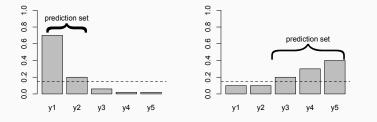
²⁰Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators

If the response Y is categorical, with values $\mathcal{Y} = \{y_1, \dots, y_{\mathcal{K}}\}$ —

6 The high-probability score:

 $s(x, y_k) = -\hat{p}_k(x)$ where $\hat{p}_k(x)$ is fitted on pretraining data estimate of $\mathbb{P}\{Y = y_k \mid X = x\}$

$$\implies \mathcal{C}(X_{n+1}) = \left\{ y_k : \hat{p}_k(X_{n+1}) \ge -\widehat{q} \right\}$$



A general recipe:

• Suppose that if our model is correct,

the "oracle" answer can be written in the form

$$C^*(X_{n+1}) = \{y : s^*(X_{n+1}, y) \le q^*\}$$

A general recipe:

• Suppose that if our model is correct, the "oracle" answer can be written in the form $\mathcal{C}^*(X_{n+1}) = \{y : s^*(X_{n+1}, y) \le q^*\}$

• Compare to the split conformal prediction set:

$$\mathcal{C}(X_{n+1}) = \{y : s(X_{n+1}, y) \le \widehat{q}\}$$

 \rightsquigarrow for conformal to approximate the oracle, need

$$spprox s^*$$
 and $\widehat{q}pprox q^*$

A general recipe:

• Suppose that if our model is correct, the "oracle" answer can be written in the form $\mathcal{C}^*(X_{n+1}) = \{y : s^*(X_{n+1}, y) \le q^*\}$

• Compare to the split conformal prediction set:

$$\mathcal{C}(X_{n+1}) = \{y : s(X_{n+1}, y) \le \widehat{q}\}$$

 \rightsquigarrow for conformal to approximate the oracle, need

$$spprox s^*$$
 and $\widehat{q}pprox q^*$
 \nearrow
relies on fitting a good model relies o
using the pretraining data fo

relies on concentration of quantiles for calibration set scores

If the true model is Y = µ(X) + ε where ε ⊥ X is symmetric & unimodal noise,

$$\begin{aligned} \mathcal{C}^*(X_{n+1}) &= \mu(X_{n+1}) \pm \mathsf{Quantile}_{1-\alpha}(|\epsilon|) \\ &= \{y : s^*(X_{n+1}, y) \leq \mathsf{Quantile}_{1-\alpha}(|\epsilon|) \} \end{aligned}$$

for $s^*(x,y) = |y - \mu(x)|$

²¹Lei et al 2018, Distribution-Free Predictive Inference for Regression

If the true model is Y = µ(X) + ε where ε ⊥ X is symmetric & unimodal noise,

$$\begin{split} \mathcal{C}^*(X_{n+1}) &= \mu(X_{n+1}) \pm \mathsf{Quantile}_{1-\alpha}(|\epsilon|) \\ &= \{y : s^*(X_{n+1}, y) \leq \mathsf{Quantile}_{1-\alpha}(|\epsilon|)\} \end{split}$$

for
$$s^*(x,y) = |y - \mu(x)|$$

 \implies if we use the residual score, and if $\widehat{\mu} \rightarrow \mu$, then²¹

$$\mathcal{C}(X_{n+1}) pprox \mathcal{C}^*(X_{n+1})$$
 as $n o \infty$

²¹Lei et al 2018, Distribution-Free Predictive Inference for Regression

In the regression setting, suppose we would like an equal-tailed, conditional coverage guarantee.

Then the optimal set is $\mathcal{C}^*(X_{n+1}) = [\gamma_{\alpha/2}(X_{n+1}), \gamma_{1-\alpha/2}(X_{n+1})]$

²²Romano et al 2019, Conformalized quantile regression; Sesia & Candès 2020, A comparison of some conformal quantile regression methods

In the regression setting, suppose we would like an equal-tailed, conditional coverage guarantee.

Then the optimal set is $\mathcal{C}^*(X_{n+1}) = \left[\gamma_{\alpha/2}(X_{n+1}), \gamma_{1-\alpha/2}(X_{n+1})\right]$

Can rewrite as

$$\mathcal{C}^*(X_{n+1}) = \{y : s^*(X_{n+1}, y) \le 0\}$$

where $s^*(x, y) = \max\{y - \gamma_{1-\alpha/2}(x), \gamma_{\alpha/2}(x) - y\}$

²²Romano et al 2019, Conformalized quantile regression; Sesia & Candès 2020, A comparison of some conformal quantile regression methods

In the regression setting, suppose we would like an equal-tailed, conditional coverage guarantee.

Then the optimal set is $\mathcal{C}^*(X_{n+1}) = [\gamma_{\alpha/2}(X_{n+1}), \gamma_{1-\alpha/2}(X_{n+1})]$

Can rewrite as

$$\mathcal{C}^*(X_{n+1}) = \{y : s^*(X_{n+1}, y) \le 0\}$$

where $s^*(x, y) = \max\{y - \gamma_{1-\alpha/2}(x), \gamma_{\alpha/2}(x) - y\}$
If $\widehat{\gamma}_{\mathsf{lo}} \to \gamma_{\alpha/2}$ and $\widehat{\gamma}_{\mathsf{hi}} \to \gamma_{1-\alpha/2}$,²²
 $\mathcal{C}(X_{n+1}) \approx \mathcal{C}^*(X_{n+1})$ as $n \to \infty$

²²Romano et al 2019, Conformalized quantile regression; Sesia & Candès 2020, A comparison of some conformal quantile regression methods

③ In the categorical setting, with conditional PMF p(y | x) — smallest possible prediction set with *marginal* coverage is

$$C^*(X_{n+1}) = \{ y : p(y \mid x) \ge t \}$$

= $\{ y : s^*(x, y) \le -t \}$ where $s^*(x, y) = -p(y \mid x)$

 \implies if we use the high-probability score, & $\widehat{p} \rightarrow p$, then²³

$$\mathcal{C}(X_{n+1}) pprox \mathcal{C}^*(X_{n+1})$$
 as $n o \infty$

²³Sadinle et al 2019, Least ambiguous set-valued classifiers with bounded error levels

Theorem (informal): asymptotic results for split CP²⁴ Assume Z_1, Z_2, \ldots are i.i.d., & the data split satisfies $n_0, n_1 \rightarrow \infty$. If $s_n \rightarrow s^*$, then

 $|\mathcal{C}(X_{n+1}) \triangle \mathcal{C}^*(X_{n+1})| \rightarrow 0.$

²⁴Duchi et al 2024, Predictive inference in multi-environment scenarios; Angelopoulos, B., Bates 2024, Theoretical Foundations of Conformal Prediction

Summary

- Conformal allows us to start with any algorithm,
 & calibrate it to achieve (marginal) predictive coverage
- Tradeoff between statistical & computational efficiency: Split CP, full CP, and CV-based versions
- $\bullet~$ Conformal +~ model-based methods $\rightsquigarrow~$ "best of both worlds"

In part 2, we will ask if conformal can be extended to handle:

- The streaming-data setting
- Distribution shift & distribution drift
- Conditional coverage rather than only marginal coverage
- & other extensions