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Vector extrapolation techniques for regulariza-
tion of ill-posed problems

Andrea Azzarelli1, Claude Brezinski2, Caterina Fenu1, Michela Redivo-
Zaglia3, Giuseppe Rodriguez1

1Department of Mathematics and Computer Science, University of Cagliari, Italy.
email: andrea.azzarelli@unica.it, kate.fenu@unica.it, rodriguez@unica.it
2Laboratory Paul Painlevé, University of Lille, France.
email: Claude.Brezinski@univ-lille.fr
3Department of Mathematics “Tullio Levi-Civita”, University of Padua, Italy.
email: michela.redivozaglia@unipd.it

Abstract

When dealing with severely ill-conditioned linear systems arising from the discretization of
first-kind integral equations, we can use a regularization method that usually produces a se-
quence of solutions depending on a parameter. Various extrapolation methods have been pro-
posed for the choice of a suitable value of the regularization parameter; see, e.g, [1, 2]. In
this talk, an extrapolation procedure for choosing the parameter in TSVD/TGSVD will be pre-
sented. It involves a sequence of extrapolated solutions that are less sensitive to a wrong choice
of the parameter. Its effectiveness will be tested by numerical experiments and compared to
other existing methods. A new implementation of Wynn’s vector epsilon algorithm [3] has
been developed exploiting a feature of the sequence generated by TSVD. In this talk theoretical
considerations and numerical results will highlight the advantages of the new implementation
and its application to regularization methods.

References

[1] A. Bouhamidi, K. Jbilou, L. Reichel, H. Sadok and Z. Wang, Vector extrapolation applied to trun-
cated singular value decomposition and truncated iteration., J Eng Math 93 (2015), 99–112.

[2] K. Jbilou, L. Reichel and H. Sadok, Vector extrapolation enhanced TSVD for linear discrete ill-posed
problems, Numer Algor 51, (2009), 195–208.

[3] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math Comp 16, (1962),
301–322.
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Randomized coordinate-descent-type iteration
methods

Zhong-Zhi Bai1

1 Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,
P.R. China.
email: bzz@lsec.cc.ac.cn

Abstract

We review and compare several representative and effective randomized coordinate-descent-
type methods, and their modifications and extensions, for solving the large, sparse, consistent or
inconsistent systems of linear equations. We also anatomize, extract, and purify the asymptotic
convergence theories of these iteration methods, and discuss, analyze, and summarize their
advantages and disadvantages from the viewpoints of both theory and computations.
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Sensitivity of eigenvalues for Hankel matrix pen-
cils

Bernd Beckermann1, Annie Cuyt2, Ana Matos1

1Université de Lille.
email: Bernd.Beckermann@univ-lille.fr, Ana.matos@univ-lille.fr
2University of Antwerp
email: annie.cuyt@uantwerpen.be

Abstract

We consider a matrix pencil (A − λB), A,B ∈ Cm×r and we want to study the stability of
eigenvalues and eigenvectors for different classes of pencils.

In the case where the pencil is regular (A andB square matrices, det(A−λB) not identically
zero), with distinct eigenvalues λ1, · · · , λr ans with right and left eigenvectors

(A− λjB)xj = 0, yj(A− λjB) = 0,

if we denote a perturbed pencil (Ã− λB̃) and measure the perturbation

ϵ :=

√
||Ã− A||22 + ||B̃ −B||22

we give bounds on the chordal distance of the eigenvalues χ(λj, λ̃j) and also relative errors of
eigenvalues. We also study the case of a Hankel pencil λH(0)

m,n −H
(1)
m,n with the entries

hk =
r∑

j=1

αjλ
k
j , k = 0, · · · ,m+ n+ 1, αj ̸= 0, λj distinct.

These pencils are important in the estimation of the parameters λj of exponential sums. We
want to reconstruct the quantities λj from the Hankel matrices λH̃ − H̃(1) polluted by noise,
specially in the case where r is small compared to n giving raise to singular pencils. Using
some perturbation theory results, we give bounds on |λj − λ̃j| and corresponding eigenvectors.
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Interpolation problems with spherical harmon-
ics using various grids on the sphere*

Jean-Baptiste Bellet1, Matthieu Brachet2, Jean-Pierre Croisille1

1Université de Lorraine, CNRS, IECL, F-57000 Metz, France.
email: jean-baptiste.bellet@univ-lorraine.fr, jean-pierre.croisille@univ-lorraine.fr
2Laboratoire de Mathématiques et Applications, Université de Poitiers, CNRS, F-86073 Poitiers, France.
email: matthieu.brachet@math.univ-poitiers.fr

Abstract

Spherical harmonic (SH) expansions are commonly used for approximation problems on the
sphere. However, when restricted to a particular spherical grid, compatibility problems between
the grid and a particular subset of SH functions can appear. This is encoded in the associated
VanDerMonde collocation matrix.
In this talk, we consider different SH subsets well adapted to different spherical grids of interest:
the Cubed-Sphere, the Icosahedron grid and the Longitude-Latitude grid. The outcome is an
algorithm based on an appropriate factorization of the VanDerMonde matrix in each case. The
properties of these SH sets are analysed. Numerical results will be presented on a series of data
interpolation problems as well as for quadrature on the sphere.

References

[1] Jean-Baptiste Bellet, Matthieu Brachet, and Jean-Pierre Croisille Quadrature and symmetry on the
Cubed-Sphere, Journal of Computational and Applied Mathematics, 409:114142, 2022.

[2] Jean-Baptiste Bellet, Matthieu Brachet, and Jean-Pierre Croisille Interpolation on the cubed sphere
with spherical harmonics, Numerische Mathematik, 153(2-3):249–278, 2023.

*This work was supported by the French National program LEFE (Les Enveloppes Fluides et l’Environnement)
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An Alternating Direction Multiplier Method for
the inversion of FDEM data*

Alessandro Buccini1, Patricia Dı́az de Alba2, Federica Pes1

1Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy.
email: alessandro.buccini@unica.it, federica.pes@unica.it
2Department of Mathematics, University of Salerno, 84084 Fisciano, Italy.
email: pdiazdealba@unisa.it

Abstract

We focus on the numerical solution of nonlinear inverse problems in applied geophysics. Our
aim is to reconstruct the structure of the soil, i.e., either its electrical conductivity or the mag-
netic permeability distribution, by inverting Frequency Domain Electromagnetic (FDEM) data.
This is a very challenging task since the problem is nonlinear and severely ill-conditioned. To
solve the nonlinear inverse problem, we propose an Alternating Direction Multiplier Method
(ADMM) algorithm, we prove its convergence, and propose an automated strategy to determine
the parameters involved. Moreover, we present two heuristic variations of the ADMM that
either improve the accuracy of the computed solutions or lower the computational cost. The ef-
fectiveness of the different proposed methods is illustrated through a few numerical examples.
This work is based on [1].

References

[1] A. Buccini, P. Dı́az de Alba, and F. Pes, An Alternating Direction Multiplier Method for the inversion
of FDEM data, Under review (2024).

*Work partially supported by the PRIN 2022 PNRR project no. P2022PMEN2 financed by the European Union
- NextGenerationEU and by the Italian Ministry of University and Research (MUR)m by Fondazione di Sardegna,
Progetto biennale bando 2021, “Computational Methods and Networks in Civil Engineering (COMANCHE)”,
and by INdAM-GNCS 2023 Project “Tecniche numeriche per lo studio dei problemi inversi e l’analisi delle reti
complesse” (CUP E53C22001930001).
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Landweber operator, its relaxations and extrap-
olations

Andrzej Cegielski1

1University of Zielona Góra, Poland.
email: a.cegielski@im.uz.zgora.pl

Abstract

Let A be a nonzero real matrix of type m × n, b ∈ Rm and let C ⊆ Rn be a closed convex
subset. We consider linear problems of type Ax = b or Ax ≤ b, where x ∈ C. Denoting
D = diag(d), where d ∈ Rm is a vector with positive coordinates, the problems may be written
equivalently as Āx = b̄ or Āx ≤ b̄, where x ∈ C, respectively, where Ā = D

1
2A and b̄ = D

1
2 b.

There are many methods for solving these problems by fixed point iterations of type
xk+1 = PC(Tx

k), (1)
where x0 ∈ Rn is arbitrary, T : Rn → Rn is an operator with FixT being the solution set of
the problem under consideration [1]-[5]. An important class of methods (1) for solving these
problems are the projected Landweber methods, where T in (1) are the Landweber operators,
i.e.

T (x) := x− γATD(Ax− b) (2)
or

T (x) := x− γATD(Ax− b)+, (3)
respectively, where γ ∈ (0, 1

∥ATDA∥2 ), ∥B∥ denotes the spectral norm of a matrix B and r+ :=

max(r, 0) denotes the nonnegative part or r ∈ Rm. One can also take a relaxed version of the
Landweber operator by replacing T in (2) and (3) by its relaxation Tλ := Id + λ(T − Id) with
λ ∈ (0, 2). We show that many iterative methods for solving the problems under consideration
may be reduced to the projected Landweber method or to its scaled version. We give estimations
of the parameters γ for particular methods. Moreover, we present some extrapolated versions
of the projected Landweber methods for solving consistent systems of equations or inequalities,
where the parameter γ in (2) and (3) may depend on x ∈ Rn. We also compare the numerical
behavior of particular methods.

References

[1] A. Cegielski, S. Reich and R. Zalas, Weak, strong and linear convergence of the CQ-method
via the regularity of Landweber operators, Optimization, 69 (2020) 605–636.

[2] Y. Censor, T. Elfving, G.T. Herman and T. Nikazad, On diagonally relaxed orthogonal
projection methods, SIAM J. Sci. Comput. 30 (2008), 473–504.

[3] Y. Censor, D. Gordon and R. Gordon, Component averaging: An efficient iterative parallel
algorithm for large and sparse unstructured problems, Parallel Computing 27 (2001), 777–
808.

[4] P.C. Hansen and M. Saxild-Hansen, AIR Tools — A MATLAB package of algebraic it-
erative reconstruction methods, Journal of Computational and Applied Mathematics, 236
(2012), 2167–2178.

[5] M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique
(SART), IEEE Trans. Image Process., 12 (2003), 957–961.
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Convergence behavior of GMRES and MINRES
for (“flopped”) Toeplitz systems

Fei Chen1, Kirk Soodhalter1, Jennifer Pestana2, Razan Abu-Labdeh2

1Trinity College Dublin.
email: chenf2@tcd.ie, ksoodha@maths.tcd.ie
2University of Strathclyde.
email: jennifer.pestana@strath.ac.uk, razan.abu-labdeh@strath.ac.uk

Abstract

Linear systems derived from discretisation of partial differential equations (PDEs) play a criti-
cal role across various applications such as climate change, personalised healthcare, and high-
value manufacturing.While preconditioned Krylov subspace methods are frequently preferred
for these systems,addressing preconditioners and solvers for nonsymmetric problems still lacks
established theory, which is crucial for key industrially-relevant problems. The current objective
of our research is to find out the reason why for Toeplitz systems, especially the preconditioined
ones, GMRES for Ax = b takes roughly half as many iterations as symmetrised MINRES for
Y Ax = Y b, where Y is the reverse identity matrix. We will talk about why theories in cur-
rent literature do not apply to our problems, how Hessenberg matrices derived from Arnoldi
iterations may indicate the convergence behavior of GMRES/MINRES, why singular values or
eigenvalues of A and/or Y A may fail to predict their convergence behavior, etc.
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A regularized Interior Point Method for sparse
optimal transport on graphs

Stefano Cipolla1, Jacek Gondzio2, Filippo Zanetti2

1University of Southampton
email: s.cipolla@soton.ac.uk
2The University of Edinburgh
email: j.gonzio@ed.ac.uk, f.zanetti@ed.ac.uk

Abstract

In this talk we present recent developments for the solution of Optimal Transport (OT) problems
on graphs using Interior Point Methods (IPMs). In particular, we will show how to solve large
scale OT problems on sparse graphs using a bespoke IPM algorithm able to suitably exploit a
Proximal-Primal–Dual regularization in order to enforce scalability. Detailed theoretical results
will be presented as well as extensive numerical results aiming at showcasing the efficiency
and robustness of the proposed approach when compared to network simplex solvers. The
presentation is based on [1].

References

[1] Cipolla, S., Gondzio, J., Zanetti, F., A regularized Interior Point Method for sparse optimal transport
on graphs. European Journal of Operational Research (2024).
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Some questions around my conjecture

Michel Crouzeix1

1Université de Rennes.
email: michel.crouzeix@univ-rennes.fr

Abstract

In [1], I have proposed the conjecture
For all matrices A with complex entries and for all polynomials p

∥p(A)∥ ≤ 2 max
z∈W (A)

|p(z)|,

where W (A) denotes the numerical range of A. This inequality has been shown for 2 × 2
matrices but is still open in the general case. At this time, the best result is the estimate (thanks
to Cesar Palencia)

∥p(A)∥ < (1+
√
2) max

z∈W (A)
|p(z)|.

I will speak about the difficulty to realize a numerical investigation of the conjecture even if we
limit us to consider the 3× 3 case.

References

[1] M. CROUZEIX, Bounds for analytic functions of matrices, Int. Eq. Op. Th., 48 (2004), pp. 461–477.
[2] M. CROUZEIX, C PALENCIA, The numerical range is a (1+

√
2)-spectral set, SIAM J. Matrix Anal.,

vol. 38, no 2, 2017, p. 649–655.
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Linear algebra of data-driven ROMs in imaging
applications

Vladimir Druskin1

1Worcester Polytechnic Institute, USA.
email: vdruskin@wpi.edu

Abstract

Data-driven reduced order models have recently emerged as an efficient tool for imaging appli-
cations in remote sensing and other noninvasive problems, such as radar imaging, seismic and
electrical exploration, etc, where measurements are not available in the domain of interest, e.g.,
[1, 2, 3]. This approach fits measurements (components of MIMO transfer functions) using
ladder network approximations, enabling the computation of the state solution in the inacces-
sible part of the model by embedding this approximation in the underlying partial differential
equations (PDEs). This presentation will describe the linear algebraic foundations of this ap-
proach, including several classical and developing algorithms: the block-Lanczos algorithm,
matrix-valued continued fraction, block-Cholesky decomposition of structured matrices, stabi-
lization of reduced order models via data-driven Gramian truncation, and passive rational fitting
of MIMO transfer functions. I will highlight some intriguing numerical matrix problems that
arise in this context.

References

[1] L. Borcea, J. Garnier, A.V. Mamonov, J. Zimmerling Geophysics 88 (2), R175-R191 Waveform
inversion via reduced order modeling, Geophysics 88 (2023), no. 2, R175–R191.

[2] V. Druskin, S. Moskow, M. Zaslavsky Reduced Order Modeling Inversion of Monostatic Data in a
Multi-scattering Environment, SIAM Journal on Imaging Sciences 17 (2024), no. 1, 334-350.

[3] Z. Jia, M. Li, F. Yang and S. Xu, Linearization of 2D Inverse Scattering Problems Based on Reduced
Order Models, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI
Radio Science Meeting, Denver, CO, USA, (2022), 1714–1715,
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Performance of the extended precision VRP pro-
cessor on various Krylov subspace solvers

Yves Durand1, Alexandre Hoffmann1, Jérome Fereyre1

1Univ. Grenoble Alpes, CEA, List,F-38000 Grenoble, France
email: yves.durand@cea.fr, alexandre.hoffmann@cea.fr, jerome.fereyre@cea.fr

Abstract

Numerical stability is a central aspect of high performance scientific computation, since the
growing scale of modern problems has led researchers to complex numerical techniques which
are vulnerable to round-off and quantization errors. This is particularly true for iterative Krylov
subspace projective solvers, which are the workhorse the modern scientific applications. Here,
higher precision, e.g. larger significand size, can mitigate these numerical instabilities and allow
for simpler and more memory efficient computations.

The VRP Processor [1] is designed to accelerate extended precision arithmetics in hardware.
It supports 1/ a fast arithmetic unit for up to 512 bits of mantissa and 2/ support in memory for
unaligned floating-point (FP) arrays.

The objective of this study is to assess the performance impact of using the VRP with ex-
tended precision on common solver algorithms, e.g. conjugate gradient (CG), its precondi-
tionned variant (PCG) and biconjugate gradient (BiCG).

We consider two metrics: 1/ convergence speed, which refers to the number of iterations
necessary for reaching that objective and 2/ execution time, including memory access time,
measured in clock cycles. Execution time depends from the actual implementation of both
hardware and low-level software, and from the input matrix structure and values.

Our sample matrices principally come from the Florida sparse Matrix Collection [2]. We
restrict ourselves to real matrices, which may be symmetric (for CG and PCG) or asymmetric
(for BiCG). We compare execution time between different precisions (including standard double
format) on the same VRP platform

Our results confirm the benefits of extended precision for Krylov subspace solvers. For the
CG solver, extending precision around 128 mantissa bits appears optimal in terms of iteration
count and mostly beneficial for cycle count. The benefit for the BiCG solver is even greater.
When using precisions above 256 bits, BiCG convergence becomes predictable.

References

[1] E. Guthmuller et al., Xvpfloat: RISC-V ISA Extension for Variable Extended Precision Floating Point
Computation, Journal IEEE Transactions on Computers, doi: 10.1109/TC.2024.3383964. (2024)

[2] T. Davis et Y. Hu, The University of Florida Sparse Matrix Collection, Journal ACM Transactions
on Mathematical Software, (2011)

18



Stochastic pth root approximation of a stochas-
tic matrix: a Riemannian optimization approach*

Fabio Durastante1, Beatrice Meini1

1University of Pisa, Department of Mathematics
email: {fabio.durastante,beatrice.meini}@unipi.it

Abstract

The evolution of a discrete-time Markov chain, with a finite number n of states, is described
in terms of an n × n matrix A, called transition matrix, whose (i, j)-th entry represents the
probability to go from state i to state j in one unit of time. The matrix A is stochastic, i.e.,
belongs to the set

S0
n = {S ∈ Rn×n : S1 = 1, S ≥ 0},

where 1 = (1, 1, . . . , 1)T ∈ Rn, and the symbol “≥” represents the element-wise ordering. For
the Perron-Frobenius theorem, any stochastic matrix A has a nonnegative Perron eigenvector
π normalized so that πT1 = 1, and called steady state vector. In many applications, the
entries of the matrix A are estimated through the analysis of historical series over long time
intervals. The typical unit time at which transitions occur is generally smaller, compared with
the characteristic time of the phenomenon to be analyzed. To know the transition probabilities
in the typical time step of the phenomenon, it would therefore be necessary to investigate what
happens in a fraction of a unit of time: for instance, which are the transition probabilities in a
half-time unit? To this end, we might compute a matrix X such that A = X2, or, in other terms,
a square root of the transition matrix A. More generally, we can inquire about any number of
intermediate steps p thus looking for a pth root X of A, A = Xp, p ∈ N. Unfortunately, a
stochastic pth root X does not exist in general [1], and several pathological cases can be readily
produced. We propose two approaches, based on Riemannian optimization, for computing a
stochastic approximation of the pth root of a stochastic matrix A [2]. In the first approach, the
approximation is found in the Riemannian manifold of positive stochastic matrices [3]. In the
second approach, we introduce the Riemannian manifold of positive stochastic matrices sharing
with A the Perron eigenvector and we compute the approximation of the pth root of A in such a
manifold. We will show examples from Markov chains used in applications and test examples
to demonstrate the effectiveness of the proposed procedure.

References

[1] N. J. Higham, L. Lin, On pth roots of stochastic matrices, Linear Algebra Appl. 435 (2011),
448–463.

[2] F. Durastante, B. Meini, Stochastic pth Root Approximation of a Stochastic Matrix: A Riemannian
Optimization Approach, SIAM J. Matrix Anal. Appl. 45 (2024), no. 2, 875–904.

[3] A. Douik, B. Hassibi, Manifold optimization over the set of doubly stochastic matrices: A second-
order geometry, IEEE Trans. Signal Process. 67 (2019), 5761–5774.

*Work supported by the PRIN project “Low-rank Structures and Numerical Methods in Matrix and Tensor
Computations and their Application” code 20227PCCKZ.
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An Arnoldi-based approach to Sobolev poly-
nomial and Sobolev rational least squares prob-
lems

Amin Faghih1, Marc Van Barel1, Niel Van Buggenhout2, Raf Vandebril1

1Department of Computer Science, KU Leuven, University of Leuven, Leuven, Belgium.
email: a.faghih@kuleuven.be, marc.vanbarel@kuleuven.be, raf.vandebril@kuleuven.be
2Department of Mathematics, Universidad Carlos III de Madrid, Madrid, Spain.
email: nvanbugg@math.uc3m.es

Abstract

In this research, we reformulate Sobolev polynomial and Sobolev rational least squares prob-
lems, which involve the derivate values up to an arbitrary order, based on orthogonal bases
[1, 2]. Although the increase in the approximation degree allows us to fit the data better in at-
tacking least squares problems, the ill-conditioning of the coefficient matrix fuels the dramatic
decrease in the accuracy of the approximation at higher degrees. To overcome this drawback,
we first show that the column space of the coefficient matrix is equivalent to a Krylov subspace
generated by a Jordan-like matrix [3]. Then the connection between Sobolev orthogonal poly-
nomials or Sobolev orthogonal rational functions and orthogonal bases for Krylov subspaces in
order to exploit Krylov subspace methods like Arnoldi orthogonalization is established.
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Abstract

Nodes in a directed network can be grouped into equivalence classes according to the roles they
play. The most prominent example of this is the Web’s well-known bowtie structure: With few
exceptions, websites can be divided into a large core group that forms a strongly connected
subgraph, a group of nodes upstream of the core, and a group of nodes downstream of the core.

Generally, the roles are determined by defining appropriate measures of similarity between
pairs of nodes. These are stored in a similarity matrix, which is often defined as the solution of
a particular matrix equation or a low-rank approximation thereof, see e.g., [1, 2].

Here I propose a new node similarity measure to extract roles in a directed network. The
idea exploits random walks that traverse the arcs both along their direction and in the opposite
direction. The similarity matrix can be computed by a fixed-point iteration whose convergence
allows a comprehensive analysis. Compared to other similarity measures, this one turns out to
provide accurate results even on highly inhomogeneous networks.
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Abstract

Katz centrality is one of the most popular centrality index in networks analysis. Introduced in
1953 [1], it states that the importance of node i in a network is given by the i-th entry of the
vector

k := (I − αA)−11 (1)

where A ∈ Rn×n is the adjacency matrix of the network and α > 0 is a damping parameter
chosen such that the resolvent operator in (1) cannot be singular, i.e., αρ(A) < 1. In practice,
the underlying indices for a given network is computed by solving the linear system

(I − αA)k = 1. (2)

Although computing Katz centrality can be efficient even for large networks, recalculating
the measure after sequentially removing a set of nodes or edges can be quite challenging. In-
deed, multiple linear systems like (2) need to be solved in sequence, one after each elimination.
For this reason, an interesting problem is to study how low-rank modifications of the adjacency
matrix, such as the removal of a set of nodes or edges from the graph, affect the centralities of
the remaining nodes, see, e.g., [2] and references therein.

In [3], we characterize how Katz centrality changes in networks when edges (resp., nodes)
are removed from the graph, extending a previous result in [4]. Then, we derive bounds on the
decay of the induced total network communicability [5]. Moreover, we introduce an efficient
numerical strategy to update Katz centrality, significantly reducing the computational burden of
recomputing it repeatedly from scratch.

This communication is based on [3] and [4].
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Abstract

We present novel improvements in the context of symbol-based multigrid procedures for solv-
ing large block Toeplitz linear systems [4]. We study the application of aggregation-based grid
transfer operators that transform the symbol of a block Toeplitz matrix from matrix-valued to
scalar-valued at the coarser level [1]. The convergence analysis of the TGM reveals the connec-
tion between the features of the scalar-valued symbol at the coarser level and the properties of
the original matrix-valued one [3]. This permits to prove the convergence of a V-cycle multigrid
involving classical grid transfer operators for scalar Toeplitz systems at the coarser levels [2].

Moreover, we extend the class of suitable smoothers focusing on the efficiency of block
strategies, particularly the relaxed block Jacobi method. General conditions on smoothing pa-
rameters are derived, with emphasis on practical applications where these parameters can be
calculated with negligible computational cost.

We test the proposed strategies on linear systems stemming from discretization of differ-
ential problems. The numerical results show computational advantages compared to existing
methods for block structured linear systems.
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Abstract

Domain decomposition research intensified in the early nineties, and there is still substantial
research activity in this field. There has been however an important shift in domain decomposi-
tion, and I will explain three new interesting research directions that are pursued very actively
at the moment, and give newest results:

1. Iterative solvers for time harmonic wave propagation: time harmonic wave propagation
problems are very hard to solve by iterative methods. All classical iterative methods,
like Krylov methods, multigrid, and also domain decomposition methods, fail for the key
model problem, the Helmholtz equation. There are new, highly promising domain decom-
position methods for such problems, which I will present, and I will also state precisely
under which conditions they can work well, and when they still fail.

2. Coarse space components: domain decomposition analysis has lacked behind multigrid in
the precise understanding of the interaction between the domain decomposition smoother
and coarse space solver, and all classical domain decomposition solvers need Krylov ac-
celeration to be effective, while multigrid does not. I will present a new spectral analysis
of the Schwarz iteration operator, which allows us to achive as an accurate understanding
of two level Schwarz methods as the seminal Fourier analysis of multigrid methods.

3. Time parallelization: new computing architectures have too many computing cores to
parallelize only in space for evolution problems. I will present time and space-time domain
decomposition methods and explain which can be effective for parabolic and hyperbolic
problems.
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Abstract

In this contribution we present TRIPs-Py, a new Python package of linear discrete inverse prob-
lems solvers and test problems. The solvers available in TRIPs-Py include direct regularization
methods (such as truncated singular value decomposition and Tikhonov) and iterative regular-
ization techniques (such as Krylov subspace methods and solvers for ℓp−ℓ1 formulations, some
of which have not been publicly available before, which enforce sparse or edge-preserving solu-
tions and handle different noise types). Some of the test problems in TRIPs-Py arise from simu-
lated image deblurring and computerized tomography, while other test problems model realistic
problems in dynamic and hyperspectral computerized tomography. During this contribution we
will give an overview of some of the state-of-the-art TRIPs-Py regularization methods, high-
lighting similarities and differences, and we will illustrate their use on some of the TRIPs-Py
test problems.
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Abstract

In this poster we focus on the solution of a class of linear differential problems of the form

dv

dt
= Av, 0 < t < T,

set in a Banach space, with the nonlocal integral condition

1

T

∫ T

0

v(t) dt = f,

where the function f and the linear, closed, possibly unbounded operator A are given.
When A is a matrix, the solution of our differential problem can then be expressed as the

action of a function of A on f , namely, v(t) = ψt(A)f . We first present some numerical meth-
ods based on the Fourier expansion of ψt(z) for computing this action [1, 2]. Then, we place
these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques
for accelerating Fourier series. This allows us to develop convergence results and to design
suitable acceleration schemes [4].

For the more general case where the differential problem is set in a Banach space, we prove
the existence and uniqueness of the solution v(t) and characterize it via a family of mixed
polynomial-rational expansions w.r.t. the operator A. Each expansion contains a purely poly-
nomial term of arbitrary degree, which is related to the Bernoulli polynomials, followed by a
series of rational terms. Each rational term is then computed as the solution of a boundary value
problem [3].

The results presented in this poster are obtained jointly with P. Boito and Y. Eidelman [1, 2,
3] and L. Aceto [4].
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Abstract

Let A be a square matrix. The resolvent, (A − zI)−1, z ∈ C, plays an important role in
many applications; for example, in studying functions of A, one often uses the Cauchy integral
formula,

f(A) = − 1

2πi

∫

Γ

(A− zI)−1f(z) dz,

where Γ is the boundary of a region Ω that contains the spectrum of A and on which f is
analytic.

If z is very close to a simple eigenvalue λ of A – much closer to λ than to any other eigen-
value ofA – then (A−zI)−1 ≈ 1

λ−z
xy∗, where x and y are right and left normalized eigenvectors

ofA corresponding to eigenvalue λ. It is sometimes observed, however, that (A−zI)−1 is close
to a rank one matrix even when z is not very close to an eigenvalue of A. In this case, one can
write (A− zI)−1 ≈ σ1(z)u1(z)v1(z)

∗, where σ1(z) is the largest singular value of (A− zI)−1

and u1(z) and v1(z) are the corresponding left and right singular vectors.
We use singular value/vector perturbation theory to describe conditions under which (A −

zI)−1 can be well-approximated by rank one matrices for a wide range of z values. If λ is
a simple ill-conditioned eigenvalue of A, if the smallest nonzero singular value of A − λI is
well-separated from 0, and if a certain other condition involving the singular vectors of A− λI
is satisfied, then it is shown that (A− zI)−1 is close to a rank one matrix for a wide range of z
values. An application of this result in comparing bounds on ∥f(A)∥ is described [1].
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Abstract

Brown and Walker [1] showed that GMRES determines a least squares solution of Ax = b
where A ∈ Rn×n without breakdown for arbitrary b,x0 ∈ Rn if and only if A is range-
symmetric, i.e. R(AT) = R(A), where A may be singular and b may not be in the range space
R(A) of A.

In this talk[2], we propose applying GMRES to ACATz = b, where C ∈ Rn×n is symmet-
ric positive definite. This determines a least squares solution x = CATz of Ax = b without
breakdown for arbitrary (singular) matrix A ∈ Rn×n and b ∈ Rn.

To make the method numerically stable, we propose using the pseudoinverse (pinv of MAT-
LAB) with an appropriate threshold parameter to suppress the influence of tiny singular values
when solving the severely ill-conditioned Hessenberg systems which arise in the Arnoldi pro-
cess of GMRES when solving inconsistent range-symmetric systems.

Numerical experiments show that the method taking C to be the identity matrix or
{diag(ATA)}−1 give least squares solutions even when A is not range-symmetric, including the
case when index(A) > 1.

This is only a proof of concept, since pinv is too expensive. We are currently investigating
more practical ways to implement the idea, as well as more efficient preconditioners for C.
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Abstract

CholeskyQR2 and shifted CholeskyQR3 are two state-of-the-art algorithms for computing tall-
and-skinny QR factorizations since they attain high performance on current computer architec-
tures. However, to guarantee stability, for some applications, CholeskyQR2 faces a prohibitive
restriction on the condition number of the underlying matrix to factorize. Shifted CholeskyQR3
is stable but has 50% more computational and communication costs than CholeskyQR2.

In this talk, a randomized QR algorithm called Randomized Householder-Cholesky
(rand cholQR) is analyzed. Using one or two random sketch matrices, it is proved that with
high probability, its orthogonality error is bounded by a constant of the order of unit round-
off for any numerically full-rank matrix, and hence it is as stable as shifted CholeskyQR3. An
evluation of the performance of rand cholQR on a NVIDIA A100 GPU demonstrates that for
tall-and-skinny matrices, rand cholQR with multiple sketch matrices is nearly as fast as, or
in some cases faster than, CholeskyQR2. Hence, compared to CholeskyQR2, rand cholQR
is more stable with almost no extra computational or memory cost, and therefore a superior
algorithm both in theory and practice.
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Abstract

Molecular simulation and electronic structure calculation are fundamental tools used in chem-
istry, solid-state physics, molecular biology, materials science, nanosciences. . . Density func-
tional theory (DFT) is one of the most widely used methods nowadays, as it offers a good
compromise between efficiency and accuracy. It is a formidable problem that requires a whole
hierarchy of choices, which lead to a number of approximations and associated errors: choice
of model, choice of discretization basis, choice of solvers, truncation error, numerical error. . .

In this talk, I will present some recent works where known techniques in linear algebra
(namely Schur complements) were successfully applied to solve numerical challenges in elec-
tronic structure calculations. First, I’ll show how to enhance the numerical stability of response
properties [1]. Such calculations require to solve successively many linear systems that are pos-
sibly badly conditioned, and using a Schur complement by decomposing the underlying Hilbert
space into appropriate subspaces enables to achieve numerical stability, even for cases badly
conditioned. If time allows, I’ll explain how to use similar techniques to compute efficient a
posteriori estimates in DFT [2, 3].
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Abstract

Randomized algorithms, like the randomized singular value decomposition (SVD) or the gen-
eralized Nyström method, have become standard approaches for computing a low-rank approx-
imation of a matrix A when A is accessed through matrix-vector products. In a number of
applications, A depends on a parameter t, like time, and it is of interest to obtain good low-
rank approximation toA(t) for many parameter values t. Examples include dynamical systems,
spectral density estimation, and Gaussian process regression. In this talk, we discuss new ran-
domized methods that aim at approximating A(t) simultaneously for many values of t. Being
direct extensions of the randomized SVD and the Nyström methods, our parameter-dependent
methods share many of their practical and theoretical advantages. Both, theoretical results and
numerical experiments show that these methods reliably return quasi-best low-rank approxima-
tions. This talk is based on joint work with Hysan Lam as well as Gianluca Ceruti, Haoze He,
and Fabio Matti.
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Abstract

In the usual one-precision environment the Bartels–Stewart algorithm [1] is the standard algo-
rithm for solving small dense Sylvester matrix equations AX + XB = C. their algorithm
consists of three steps, including the computation of the Schur decompositions, the substitution
for solving the Sylvester equation with quasi-triangular coefficients, and the final recovering
transformation.

In the new mixed-precision algorithm we propose, the computation of the Schur decomposi-
tions, which are the most expensive part of the algorithm, is performed in a low precision. Then
the algorithm refines via a stationary iteration the approximate solution obtained by solving the
quasi-triangular Sylvester equation with the low-precision quasi-triangular coefficient matrices;
and this is in fact an iterative refinement scheme for the quasi-triangular Sylvester equation with
the coefficient matrices in a perturbed form. Finally, in order to recover the solution from the
Schur decompositions we need the unitary factors to be unitary to the working precision. In
order to do so, we propose two efficient approaches to orthonormalize to the working precision
the low-precision unitary factors, one based on orthonormalization and the other on inversion
of the unitary factors.

We test the new mixed-precision methods on various problems from the literature contain-
ing both Sylvester and Lyapunov matrix equations. Numerical experiments show that the new
methods are comparable with the classical Bartels–Stewart method in terms of accuracy, and
they can be faster if the employed low-precision arithmetic is sufficiently cheaper than the
working-precision arithmetic.

References

[1] R. H. Bartels, G. W. Stewart. Algorithm 432: Solution of the matrix equation AX + XB = C,
Comm. ACM, 15: 820–826 (1972).

32



Reorthogonalized Pythagorean variants of block
classical Gram-Schmidt

Erin Carson1, Kathryn Lund2, Yuxin Ma1, Eda Oktay1

1Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 49/83, 186 75 Praha
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Abstract

Block classical Gram-Schmidt (BCGS) is commonly used for orthogonalizing a set of vectors
X in distributed computing environments due to its favorable communication properties rel-
ative to other orthogonalization approaches, such as modified Gram-Schmidt or Householder.
However, it is known that BCGS (as well as recently developed low-synchronization variants of
BCGS) can suffer from a significant loss of orthogonality in finite-precision arithmetic, which
can contribute to instability and inaccurate solutions in downstream applications such as s-step
Krylov subspace methods. A common solution to improve the orthogonality among the vectors
is reorthogonalization. Focusing on the “Pythagorean” variant of BCGS, introduced in [E. Car-
son, K. Lund, & M. Rozložnı́k. SIAM J. Matrix Anal. Appl. 42(3), pp. 1365–1380, 2021], which
guarantees an O(ε)κ2(X) bound on the loss of orthogonality as long as O(ε)κ2(X) < 1, where
ε denotes the unit roundoff, we introduce and analyze two reorthogonalized Pythagorean BCGS
variants. These variants feature favorable communication properties, with asymptotically two
synchronization points per block column, as well as an improved O(ε) bound on the loss of
orthogonality. Our bounds are derived in a general fashion to additionally allow for the analysis
of mixed-precision variants. We verify our theoretical results with a panel of test matrices and
experiments from a new version of the BlockStab toolbox.
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Abstract

We discuss two approaches to solving the parametric (or stochastic) eigenvalue problem. One
of them uses a Taylor expansion and the other a Chebyshev expansion. The parametric eigen-
value problem assumes that the matrixA depends on a parameter µ, where µmight be a random
variable. Consequently, the eigenvalues and eigenvectors are also functions of µ. We compute
a Taylor approximation of these functions about µ0 by iteratively computing the Taylor coeffi-
cients. The complexity of this approach is O(n3) for all eigenpairs, if the derivatives of A(µ) at
µ0 are given. The Chebyshev expansion works similarly. We first find an initial approximation
iteratively which we then refine with Newton’s method. This second method is more expensive
but provides a good approximation over the whole interval of the expansion instead around a
single point.

We present numerical experiments confirming the complexity and demonstrating that the
approaches are capable of tracking eigenvalues at intersection points. Further experiments shed
light on the limitations of the Taylor expansion approach with respect to the distance from the
expansion point µ0.

This work is joint work with Melina Freitag (University of Potsdam). There is a preprint
available discussing significant parts of the research [1]. Other parts have been published in the
proceedings paper [2].

The research has been partially funded by the Deutsche Forschungsgemeinschaft (DFG)—
Project-ID 318763901—SFB1294.
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Abstract

Given positive integer dimensions n ≥ m ≥ p, consider the (n+m+ p)× (n+m+ p) double
saddle point linear system of the form

Aw ≡



A BT 0
B −D CT

0 C E





x
y
z


 =



f
g
h


 ≡ b, (1)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix, B ∈ Rm×n and C ∈ Rp×m

have full row rank, D ∈ Rm×m and E ∈ Rp×p are square positive semidefinite matrices.
Moreover f ∈ Rn, g ∈ Rm and h ∈ Rp are given vectors. Such linear systems arise in many
scientific applications including constrained quadratic programming, magma-mantle dynamics,
liquid crystal director modeling or in the coupled Stokes-Darcy problem, to name a few.

This work concerns the spectral analysis of an SPD block preconditioner for the iterative so-
lution of (1). We consider the SPD preconditioner proposed in [1] in the framework of multiple
saddle point linear systems, defined as P = PLP−1

D P⊤
L , where PD and PL are the well-known

block diagonal and block triangular preconditioners, respectively.
We analyze the eigenvalue distribution of the preconditioned matrix P−1A and show that

its eigenvalues are described in terms of the roots of a cubic polynomial with real coeffi-
cients. Through a constrained optimization procedure to bound the extremal roots of parameter-
dependent polynomials, we derive tight eigenvalue bounds in the interesting practical case in
which all the blocks of the preconditioner are applied inexactly.

If time permits, I will also present eigenvalue bounds for symmetric multiple saddle-point
linear systems, preconditioned with block diagonal preconditioners. We have extended known
results for 3× 3 block systems and for 4× 4 systems to an arbitrary number of blocks.
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Abstract

The computation of simultaneous Gaussian quadrature rules associated to multiple orthogonal
polynomials (MOP) [1, 3, 4] is considered in this talk. Suppose r weight functions w(i)(x) ≥ 0,
with support ∆i, i = 1, . . . , r, on the real line are given. The MOP {pn(x)}∞n=0 satisfy the
following orthogonality conditions:

∫

∆i

pn(x)x
kw(i)(x)dx = 0, 0 ≤ k ≤ ni−1,

with n =
∑r

i=1 ni. We focus on the computation of the nodes xj and weights ω(i)
j of a simulta-

neous Gaussian quadrature rule
n∑

j=1

f(xj)ω
(i)
j ≈

∫

∆i

f(x)w(i)(x)dx, 1 ≤ i ≤ r.

They can be computed via the eigendecomposition of a banded lower Hessenberg matrix Hn,
built on the coefficients of recurrence relations associated to the corresponding MOP. The
Golub–Welsch algorithm [2] can be adapted to compute the eigendecomposition of Hn, but
it suffers from tremendous instability due to the high non-normality characterizing the latter
matrix [5, 3, 4]. Here, we propose a new balancing procedure that drastically reduces the con-
dition of the Hessenberg eigenvalue problem, allowing to compute the simultaneous Gaussian
quadrature rule,in floating point arithmetic, in a reliable way for different kinds of MOP, requir-
ing O(n2) computational complexity and O(n) memory.
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Abstract

Let L be a self-adjoint positive operator acting in a Hilbert space H, where the eigenfunctions
of L form an orthonormal basis of H. Then, for β ∈ (0, 1) and a given g ∈ H, L−β can be
expressed through the spectral decomposition of L. The numerical approximation of L−β finds
immediate application when solving equations involving a fractional super diffusion term like
(−∆)

α
2 , α ∈ (1, 2), where ∆ denotes the standard Laplacian. This has driven significant interest

in recent years toward efficient approximations of fractional powers.
Among the approaches recently introduced are methods based on quadrature rules for the

integral representation of λ−
α
2 ; see, e.g., [2, 3, 4]. Starting from the Dunford integral repre-

sentation (see, e.g., [5]) with suitable changes of variables and quadrature rules, one typically
finds rational approximations of the type (m− 1,m), where m is equal or closely related to the
number of points of the quadrature formula.

Exploiting the Gauss-Jacobi quadrature approach given in [3], we define and investigate
a preconditioner for a discretization of λ−

α
2 that results in the sum of m inverses of shifted

Laplacian matrices; see [1]. While comparable to the Laplacian for α close to 2, for α close to 1
and m reasonably small, the resulting preconditioner provides better results than the Laplacian
itself, while maintaining the same computational complexity. Aiming to improve these results,
we further explore the preconditioning feasibility of exponentially convergent quadrature rules,
like those in [2, 4]. We discuss a method for choosing the involved parameters that keeps
the number of inverses small and allows the exponential convergence to be reflected in the
preconditioning numerical optimality.
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Abstract

In the context of random walks on graphs, Kemeny’s constant is a measure of the non-connectivity
of the graph [2, 3]. The higher the constant, the closer the graph is to be non-connected.

In [1] an edge centrality measure in graphs, based on the variation of Kemeny’s constant
under removal of an edge, has been introduced. Roughly speaking, according to this measure,
an edge is important if its removal causes a large increase of Kemeny’s constant. Some reg-
ularization and filtering techniques have been introduced in [1] to deal with cut-edges, whose
removal would disconnect the graph.

This measure is effective in determining important connections in road networks. However,
it still presents some weaknesses in evaluating the importance of peripheral roads.

Here, we present an improvement of this measure, based on the directional derivative of Ke-
meny’s constant. We prove that the new measure continues to be non-negative, as the previous
one. We provide an explicit expression of this measure, given in terms of the inverse of a mod-
ified Laplacian matrix of the graph, together with an effective algorithm for its computation.

For barbell graphs, an expression given in terms of the weights of the edge is provided that
confirms its good behavior in assessing the importance of peripheral roads.

Numerical experiments performed on the road map of Tuscany confirm the nice features of
this measure.
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Abstract

We derive zero inclusion and exclusion sectors for scalar polynomials whose coefficients have
sign restrictions. These sectors are determined only by the sign of the coefficients, which easily
allows them to be applied to polynomial eigenvalue problems with positive and negative definite
matrix coefficients. Such problems are often encountered in applications, one of which, in
aerodynamics, provided the initial motivation for this work.

Although, strictly speaking, not related to linear algebra, the geometric approach used to ob-
tain the aforementioned sectors can also be used to locate the zeros of complex valued harmonic
polynomials, which have a fascinating connection to gravitational lensing. Such polynomials
are not analytic, complicating their analysis, an illustration of which is, e.g., the fact that the
number of their zeros is generally unknown a priori. We briefly describe an application to har-
monic trinomials, which has been of recent interest, and for which surprisingly precise regions
can be found for the location of their zeros.
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Abstract

The Grcar matrix is often used as a test matrix for algorithms designed for solving linear sys-
tems or eigenvalue problems. It is a banded Toeplitz upper Hessenberg matrix with sensitive
eigenvalues.

In this note we provide closed form expressions for the factors of its LU factorization and
for its inverse. More importantly, we also show how to obtain a parametric description of its
asymptotic spectrum, which is the location of the eigenvalues in the complex plane when the
order n→ ∞.
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Abstract

Multigrid methods (MG) are at the heart of the most powerful linear algebra solvers. They are
powerful methods for solving large problems arising from the discretization of linear partial
differential equations. In this study, geometric multigrid techniques for the isogeometric dis-
cretization of second-order elliptic problems are presented. The smoothing and approximation
properties of the relaxation approach are investigated. These properties imply that two-grid and
multigrid techniques will achieve uniform convergence. As the spline degree is increased, the
application of the multigrid to the isogeometric situation leads to a large degradation of the
convergence rates. Therefore, a specific combination of multigrid methods and preconditioning
Krylov solvers is used to make the iteration numbers robust with respect to the spline degree
[1, 2]. Our main focus revolves around using vector polynomial extrapolation methods [3] to
enhance the convergence behavior of multigrid techniques. Numerical investigations for both
linear and nonlinear problems demonstrate how well these extrapolation methods perform in
accelerating the multigrid solver’s convergence.
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Abstract

In this presentation we describe two new Krylov subspace methods for solving rectangular
large-scale linear inverse problems. The first approach is a modification of the Hessenberg it-
erative algorithm that is based off an LU factorization and is therefore referred to as the least
squares LU (LSLU) method. The second approach incorporates Tikhonov regularization in an
efficient manner; we call this the Hybrid LSLU (H-LSLU) method. Both methods are inner-
product free, making them advantageous for high performance computing and mixed precision
arithmetic. Theoretical results and extensive numerical results show that H-LSLU can be ef-
fective in solving large-scale inverse problems and has comparable performance with existing
iterative projection methods.
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Abstract

In this talk, we propose a versatile approach to address a large family of matrix nearness prob-
lems. The method is based on splitting a matrix nearness problem into two nested optimization
problems, of which the inner one can be solved either exactly or cheaply, while the outer one
can be recast as an unconstrained optimization task over a smooth real Riemannian manifold.
We also show that the objective function to be minimized on the Riemannian manifold can
be discontinuous, thus requiring regularization techniques, and we give conditions for this to
happen. Finally, we demonstrate the practical applicability of our method by implementing it
for a number of matrix nearness problems that are relevant for applications, including nearest
singular matrix with a given sparsity structure, nearest singular matrix polynomial, approximate
GCD and nearest unstable matrix.
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Abstract

Many problems in science and engineering give rise to linear systems of equations that are
commonly referred to as large-scale linear discrete ill-posed problems. The matrices that define
these problems are typically severely ill-conditioned and may be rank deficient. Because of
this, the solution of linear discrete ill-posed problems may not exist or be extremely sensitive to
perturbations caused by error in the available data. These difficulties can be reduced by apply-
ing regularization. We explore the connections between iterated Tikhonov regularization and
iterative refinement on the Tikhonov problem in mixed precision using a filter factor analysis.
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Abstract

We introduce a novel procedure for computing an SVD-type approximation of a tall matrix A ∈
Rm×n, m ≥ n. Specifically, we propose a randomization-based algorithm that improves over
the standard Randomized Singular Value Decomposition (RSVD) from [1]. Most significantly,
our approach, the Row-aware RSVD (R-RSVD), explicitly constructs information from the
row space of A. This leads to better approximations to Range(A) while maintaining the same
computational cost. The efficacy of the R-RSVD is supported by both robust theoretical results
and extensive numerical experiments. Furthermore, we present an alternative algorithm inspired
by the R-RSVD, capable of achieving comparable accuracy despite utilizing only a subsample
of the rows of A, resulting in a significantly reduced computational cost. This method, that we
name the Subsample Row-aware RSVD (Rsub-RSVD), is supported by a weaker error bound
compared to the ones we derived for the R-RSVD, but still meaningful as it ensures that the
error remains under control. Additionally, numerous experiments demonstrate that the Rsub-
RSVD trend is akin to the one attained by the R-RSVD even for small subsampling parameters.
Finally, we consider the application of our schemes in two very diverse settings which share the
need for the computation of singular vectors as an intermediate step: the computation of CUR
decompositions by the discrete empirical interpolation method (DEIM) and the construction of
reduced-order models in the Loewner framework, a data-driven technique for model reduction
of dynamical systems.
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Abstract

Multilevel methods represent a powerful approach in numerical solution of partial differential
equations. The multilevel structure can also be used to construct estimates for total and alge-
braic errors of computed approximations. We consider residual-based error estimates based on
properties of quasi-interpolation operators, stable-splittings, or frames and we focus on the set-
tings where the system matrix on the coarsest level is still large and the associated terms in the
estimates can only be approximated. We show that the way in which the error term associated
with the coarsest level is approximated is substantial. In particular, it can significantly affect
both the efficiency (accuracy) of the overall error estimates and their robustness with respect to
the size of the coarsest problem. We propose a new approximation of the coarsest-level term
based on using the conjugate gradient method with an appropriate stopping criterion. We prove
that the resulting estimates are efficient and robust with respect to the size of the coarsest-level
problem. Numerical experiments illustrate the theoretical findings.
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Abstract

Large-scale dynamic inverse problems are typically ill-posed and suffer from complexity of the
model constraints and large dimensionality of the parameters. A common approach to overcome
ill-posedness is through regularization that aims to add constraints on the desired parameters in
both space and temporal dimensions. In this work, we propose an efficient method that incor-
porates a model for the temporal dimension by estimating the motion of the objects alongside
solving the regularized problems. In particular, we consider the optical flow model as part of
the regularization that simultaneously estimates the motion and provides an approximation for
the desired image. To overcome high computational cost when processing massive scale prob-
lems, we combine our approach with a generalized Krylov subspace method that efficiently
solves the problem on relatively small subspaces. The effectiveness of the prescribed approach
is illustrated through numerical experiments arising in dynamic computerized tomography and
image deblurring applications.
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Abstract

We are interested in the numerical solution of the tensor least squares problem

min
X

∥
p∑

i=1

X ×1 A
(i) ×2 B

(i) ×3 C
(i) −D∥F ,

where D is low rank. In our case low rank means that D = Dcore×1D1×2D2×3D3, with eachDi

low rank and the core tensor having small dimensions. We will focus on the implementation for
p = 2, 3, but it can be generalized to the multiterm setting, particularly useful for applications
such as PDEs. The solution of the problem above has attracted significant interest in the recent
literature, see, e.g., [1,2]. Along the same lines, we derive a truncated tensor-oriented LSQR.
To this end, we generalize the work presented in [5] for the matrix least squares problem, where
we have studied truncated matrix-oriented LSQR and compared it with the truncated matrix-
oriented Conjugate Gradient (see [3,4]). We devise an implementation for the truncation step
taking advantage of the structure of tensors, allowing us to work with low rank approximations.
Natural applications and experiments arise from the numerical solutions of PDEs; we illustrate
the performance of the new method with some examples in the 3D case, and compare truncated
LSQR with already existing approaches based on the matricization of the problem.
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Abstract

In quantum mechanics, the Rosen-Zener model represents a two-level quantum system. Its
generalization to multiple degenerate sets of states leads to a non-autonomous linear system of
ordinary differential equations (ODEs). We propose a new method for computing the solution
operator of this system of ODEs. This new method is based on a recently introduced expression
of the solution in terms of an infinite matrix equation, which can be efficiently approximated
by truncation, fixed point iterations, and low-rank approximation. This expression is possible
thanks to the so-called ⋆-product approach for linear ODEs. The numerical experiments show
that the new method’s computing time seems to scale linearly with the model’s size.

References

[1] C. Bonhomme, S. Pozza, N. Van Buggenhout A new fast numerical method for the generalized
Rosen-Zener model, arXiv:2311.04144 [math.NA].

49



Convergence analysis and parameter choice for
the iterated Arnoldi-Tikhonov method

Davide Bianchi1, Marco Donatelli2, Lothar Reichel3, Davide Furchi2

1School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, China.
email: fbianchid@mail.sysu.edu.cn
2Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy.
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Abstract

The Arnoldi-Tikhonov method is a well-established regularization technique for solving large-
scale ill-posed linear inverse problems. This method uses the Arnoldi decomposition to re-
duce computational complexity by projecting the discretized problem into a lower-dimensional
Krylov subspace, in which it is solved. This talk explores the iterated Arnoldi-Tikhonov method
and provides an analysis that addresses all approximation errors. Additionally, it introduces a
novel strategy for choosing the regularization parameter.
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Abstract

We consider the problem of estimating the trace of a matrix function f(A). In certain situ-
ations, in particular if f(A) cannot be well approximated by a low-rank matrix, combining
probing methods based on graph colorings with stochastic trace estimation techniques can yield
accurate approximations at moderate cost. So far, such methods have not been thoroughly an-
alyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript,
we perform a detailed analysis of stochastic probing methods and, in particular, expose con-
ditions under which the expected approximation error in the stochastic probing method scales
more favorably with the dimension of the matrix than the error in non-stochastic probing. Ex-
tending results from [1], we also characterize situations in which using just one stochastic vector
is always—not only in expectation—better than the deterministic probing method. Several nu-
merical experiments illustrate our theory and compare with existing methods.
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Abstract

In [1] an algorithm for regularization problems in general form, based on projections on the
null space of the regularization operator and its orthogonal complement, was introduced. This
algorithm was further discussed in [2], where some properties and implementation details were
highlighted. When this approach is applied to large scale general form problems by means
of the LSQR method, it becomes necessary to solve, at each iteration step, a least-squares
problem for the regularization matrix and one for its transpose. We will discuss this aspect of
the computation, in the case of large and sparse regularization matrices, which is rather common
in image reconstruction.
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Abstract

In this paper, we study theoretically and numerically the Anderson acceleration method. First,
we extend the convergence results of Anderson’s method for a small depth to general nonlinear
cases. More precisely, we prove that the Type-I and Type-II Anderson(1) are locally q-linearly
convergent if the fixed point map is a contraction with a Lipschitz constant small enough. We
then illustrate the effectiveness of the method by applying it to the resolution of chemical equi-
libria. This test case has been identified as a challenging one because of the high nonlinearity
of the chemical system and stiffness of the transport phenomena. The Newton method (usually
Newton-Raphson) has been adopted by quite all the equilibrium and reactive transport codes.
But the often ill-conditioned Jacobian matrix and the choice of a bad initial data can lead to
convergence problems, especially if solute transport produces sharp concentrations profiles.
Here we propose to combine the Anderson acceleration method with a particular formulation
of the equilibrium system called the method of positive continued fractions (usually used as
preconditioning). As shown by the numerical simulations, this approach makes it possible to
considerably improve the robustness of the resolution of chemical equilibria algorithms, es-
pecially since it is coupled with a strategy to monitor the depth of the Anderson acceleration
method in order to control the condition number.
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Abstract

In an era where Artificial Intelligence (AI) is permeating virtuallly every single field of science
and engineering, it is becoming critical to members of the numerical linear algebra commu-
nity to understand and embrace AI, and to contribute to its advancement, and more broadly to
the advancement of machine learning. What is fascinating and rather encouraging is that Nu-
merical Linear Algebra (NLA) is at the core of machine learning and AI. In this talk we will
give an overview of Deep Learning with an emphasis on Large Language Models (LLMs) and
Transformers [3, 4]. The very first step of LLMs is to convert the problem into one that can
he exploited by numerical methods, or to be more accurate, by optimization techniques. All AI
methods rely almost entirely on essentially 4 ingredients: data, optimization methods, statisti-
cal intuition, and linear algebra. Thus, the first task is to map words or sentences into tokens
which are then imbedded into Euclidean spaces. From there on, the models refer to vectors and
matrices. We will show a few examples of important developments in ML, that were heavily
based on linear algebra ideas. Among these, we will briefly discuss LoRa [1] a technique in
which low-rank approximation was used to reduce computational cost in some models, leading
to gains of a few orders of magnitude. Another contribution that used purely algebraic argu-
ments and that had a major impact on LLMs is the article [2]. Here the main discovery is that
the nonlinear “self-attention” in LLMs can be approximated linearly, resulting in huge savings
in computations, as the computational complexity was decreased from O(n2) to O(n).

The talk will be mostly a survey of known recent methods in AI with the primary goal of
unraveling the mathematics of Transformers. A secondary goal is to initiate a discussion on the
issue of how NLA specialitst can participate in AI research.
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Abstract

In Bayesian inverse problems, it is common to consider several hyperparameters that define
the prior and the noise model that must be estimated from the data. In particular, we are in-
terested in linear inverse problems with additive Gaussian noise and Gaussian priors defined
using Matern covariance models. In this case, we estimate the hyperparameters using the max-
imum a posteriori (MAP) estimate of the marginalized posterior distribution. However, this is a
computationally intensive task since it involves computing log determinants.

To address this challenge, we consider a stochastic average approximation (SAA) of the
objective function and use the preconditioned Lanczos method to compute efficient function
evaluation approximations. We can therefore compute the MAP estimate of the hyperparam-
eters efficiently by building a preconditioner which can be updated cheaply for new values
of the hyperparameters; and by leveraging numerical linear algebra tools to reuse information
efficiently for computing approximations of the gradient evaluations.

We demonstrate the performance of our approach on inverse problems from tomography
and atmospheric transport.
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Abstract

Shanks transformation transforms a real sequence (sn) into a real sequence (tn) such that the
convergence of (sn) is accelerated via (tn). Each term tn appears as a solution of a linear
system for which the size grows with n. Wynn’s scalar Epsilon-algorithm is an appropriate way
for computing tn without explicitly solving the related linear system.

In the literature, generalisations of Shanks transformation to vector sequences (vn) are de-
rived with a strong connection to the scalar case, by using inner product yTvn for some choosen
vector y. This approach gives rise to topological Epsilon-algorithms for computing the trans-
formed sequence.

In this talk, we introduce Shanks transformation for a vector sequences, inner product free.
The construction of such transformation is achieved through the use of the powerful tools of
Clifford algebra, which is a matrix algebra. Each term of the transformed sequence can be
viewed as a solution of a generalized linear system with coefficients in Clifford algebra. We
show also that the well-known vector Epsilon-algorithm introduced by P. Wynn allows us to
compute the desired transformed sequence in an efficient way, without explicitly solving the
generalized linear system.
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Abstract

We introduce a memory-efficient method for computing the action of a Hermitian matrix func-
tion on a vector. Our method consists of an outer rational Lanczos algorithm combined with an
inner basis compression procedure based on rational Krylov subspaces that only involve small
matrices. The cost of the compression procedure is negligible with respect to the cost of the
outer Lanczos algorithm. This enables us to avoid storing the whole Krylov basis, leading to
substantial reductions in memory requirements. This method is particularly effective when the
outer rational Lanczos algorithm needs a significant number of iterations to converge and each
iteration involves a low computational effort, a scenario that often occurs when polynomial
Lanczos, as well as extended and shift-and-invert Lanczos are employed. Theoretical results
prove that, for a wide variety of functions, the proposed algorithm differs from rational Lanczos
by an error term that is usually negligible. The algorithm is compared with other low-memory
Krylov methods from the literature on a variety of test problems, showing competitive perfor-
mance.
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Abstract

Fractional diffusion equations (FDEs) have rapidly gained attention and popularity in the last
decades, mainly due to the fractional derivative order, a non-integer parameter that can be fine-
tuned to a variety of situations and makes FDEs a strong and flexible model for anomalous
diffusion. On the downside, analytical solutions are often difficult to acquire, unavailable or
computationally inefficient. Hence, numerical methods need to be investigated.

Here we consider two-dimensional space-fractional diffusion equations defined on convex
domains and introduce specialized tools for addressing the discretized problems. More in detail,
the resulting linear systems fall in the Generalized Locally Toeplitz (GLT) class, a large algebra
of matrix sequences equipped with several tools for performing an accurate spectral analysis
of the coefficient matrices in an asymptotic sense, as the finesse parameters tend to zero and
the precision of the discretization grows along with the size of the matrices. The acquired
spectral information is then used to design numerical solvers, such as fast multigrid methods and
preconditioners for the conjugate gradient or GMRES, and to assess their expected performance.
Numerical experiments are presented and critically discussed.
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Abstract

We present new convergence bounds for weighted, preconditioned, and deflated GMRES ap-
plied to non-Hermitian linear systems. These bounds are given for the case when the Hermitian
part of the coefficient matrix is positive definite, the preconditioner is Hermitian positive def-
inite, and the weight is equal to the preconditioner. The decrease in residual is bounded with
respect to:

• the condition number of the preconditioned Hermitian part of the problem matrix,

• a certain measure of how non-Hermitian the problem is.

This indicates how to choose the preconditioner and the deflation space in order to acceler-
ate convergence. One such choice of deflation space is proposed, and numerical experiments
illustrate the effectiveness of such space.
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Abstract

One of the directions of our research is the problem of estimating the A-norm of the error in
the conjugate gradient (CG) method for solving linear systems Ax = b with a real symmetric
positive definite matrix A. This quantity is one of the most relevant characteristics for measur-
ing the quality of an approximation, and plays an important role in stopping criteria in many
applications. For a summary and state of the art on error estimation in CG, see our book [1].

Let us recall a preferred way of estimating the A-norm of the error in CG; see [1, 2]. Denot-
ing k the current CG iteration, we have developed a heuristic technique to obtain a sufficiently
accurate estimate of the A-norm of the error at some of the previous iterations ℓ while keeping
the delay k − ℓ as small as possible to avoid unnecessary iterations. This technique always
provides a lower bound, but can also be used to construct a (not guaranteed) upper bound.

In this talk, we extend the above mentioned results to CG-like algorithms for solving least-
squares problems; see [3]. In particular, we consider the CGLS and LSQR algorithms, which
are mathematically equivalent to CG applied to a system of normal equations. We show how
to estimate the unknown ATA-norm of the error in CGLS and LSQR, and discuss the role of
this quantity in stopping criteria for least-squares problems. The resulting estimate preserves
its main properties: it can be evaluated cheaply, it is numerically reliable in finite-precision
arithmetic, and it can be used in preconditioned algorithms. Numerical experiments confirm the
robustness and satisfactory behavior of the estimates.
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Abstract

Deflation for linear eigenvalue problems is a standard technique that consists of removing a
known eigenvalue or changing it so that the other eigenvalues are easier to find. In this talk
we discuss and compare different strategies to deflate eigenvalues of nonlinear eigenvalue prob-
lems. We will pay particular attention to the quadratic eigenvalue problem, describe a structural
engineering application where deflation is needed, and introduce a deflation strategy based on a
new class of transformations.
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Abstract

Polynomial Krylov subspaces form the basis for several powerful algorithms in classical com-
puting. For certain problems, algorithms based on rational Krylov subspaces are more effective,
e.g., approximation of certain matrix functions and computation of internal eigenvalues.

Quantum computing holds the promise that one day it can compute with matrices much
larger than those that can be handled by classical computers. In recent years several effec-
tive quantum algorithms based on polynomials have been proposed, some of them inspired by
Krylov subspace methods. However, rational functions as a building block for quantum algo-
rithms remains underexplored. One major obstacle for the use of rational functions is the lack of
an effective way to compute a resolvent, i.e., a single term in a partial fraction expansion, on a
quantum computer. Procedures used on classical computers cannot be used directly, since some
operations that are cheap on a classical computer can be expensive on a quantum computer, and
vice versa.

We propose a procedure for computing a resolvent on quantum hardware that starts from the
representation of the resolvent as an integral of a matrix exponential over an infinite interval.
Our procedure employs a truncation of the integration interval and a quadrature rule in order
to represent this integral in terms of objects that can be efficiently computed on a quantum
computer. We compare several quadrature rules, analyze the quantum computational cost of
this procedure and show that it outperforms the state of the art methods.

We also describe how our procedure can be used to construct a rational filter that can com-
bined with existing quantum eigensolvers to improve convergence to internal eigenvalues sig-
nificantly. Furthermore, we comment on the possibility of developing quantum analogues to
classical rational function based algorithms and the corresponding challenges.
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Abstract

The randomized coordinate descent (RCD) method and the randomized Kaczmarz (RK) method
are two classical and widely-used randomized iteration methods for solving large-scale linear
systems, they can be regarded as two special cases of the randomized multiplicative Schwarz
(RMS) method. Motivated by the exact error analysis of the RCD method and the RK method,
we conduct a closed-form formula for the solution error of the RMS method and further give
a tighter upper bound for its convergence rate. On this basis, we unify the convergence results
of the RCD method and the RK method, and generalize them to the more general extrapolated
RCD method and extrapolated RK method. Numerical experiments confirm that the new esti-
mate for the convergence rate of the RMS method is more accurate, and it can help us to find a
more proper relaxation parameter.
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2Université du Littoral Cote d’Opale, LMPA, 50 rue F. Buisson, 62228 Calais-Cedex, France.
email: khalide.jbilou@univ-littoral.fr

Abstract

In this paper, we propose a new approach for low rank approximation of quaternion tensors
[4, 1, 2]. The proposed method is based on the use of quasi-norms to approximate the tensor by
a low rank tensor using the QT-product [3] that generalize the L-product to N-mode quaternions.
We show that the proposed method is able to well approximate the tensor compared to the
convexifying of the rank, i.e, the nuclear norm. We give theoretical results and numerical
experiments to show the efficiency of the proposed method in the Inpainting and Denoising
applications.
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Abstract

For solving large and sparse linear complementarity problems arsing from scientific computing
and engineering applications, we propose a class of projected successive iteration methods with
randomized or greedy selection of update indices in each iteration. The theoretical convergence
analysis including the expected convergence rate are proposed when the system matrix are sym-
metric positive definite and nonsymmetric P-matrix, respectively. Numerical experiments on the
linear complementarity problems arising from American option pricing and nonnegative matrix
factorization show the efficiency of the proposed methods.

65



Block Gauss-Radau quadrature

Jörn Zimmerling1, Vladimir Druskin2, Valeria Simoncini3

2Uppsala University.
email: jorn.zimmerling@it.uu.se
2Worcester Polytechnic Institute
email: vdruskin@wpi.edu
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Abstract

In this talk we explore quadratures for BTϕ(A, s)B where A is a symmetric nonnegative-
definite matrix in Rn×n, B is a tall matrix in Rn×p, and ϕ(·, s) is a matrix function with pa-
rameter s ∈ R+ [1]. These formulations commonly arise in the computation of multiple-input
multiple-output transfer functions for diffusion PDEs.

We propose an approximation scheme for BTϕ(A, s)B leveraging the block Lanczos al-
gorithm [2] and its representation through Stieltjes matrix continued fractions. Using Stieltjes
matrix continued fractions we show that the block-Lanczos algorithm converges monotonically
for ϕ(·, s) = BT (A + sI)−1B and we extend the notion of Gauss-Radau quadrature to the
block case, (see for instance [3] for the non-block case). Together, the Gauss and Gauss-Radau
quadrature facilitate the derivation of easily computable error bounds.

These Stieltjes matrix continued fractions can be defined via the recursion

Cj(s) =
1

sγ̂j +
1

γj + Cj+1(s)

, with symmetric positive definite γ̂j,γj ∈ Rp×p,

where γ̂j and γj are directly related to the block-Lanczos coefficients. We show that the Gauss
quadrature approximation toBT (A+sI)−1B afterm iterations of block-Lanczos corresponds to
C1(s) defined through the upper recursion terminated with Cm+1 = 0, whereas the Gauss-Radau
quadrature corresponds to a truncation with Cm+1 = ∞.

Finally, we present extrapolation schemes using averages of Gauss and Gauss-Radau quadra-
ture and provide qualitative reasoning for such extrapolation, grounded in potential theory for
Padé approximations. We show numerical examples for various ϕ(A, s) where A is a graph
Laplacian or discretization of an operator with continuous spectrum, e.g., PDE operators in
unbounded domains. We demonstrate that the derived error-bound is tight in important applica-
tions and that the extrapolation decreases the approximation error by one order of magnitude.
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