SLIDES
Statistical learning
February 1 – 5, 2016
- Francis Bach (ENS Paris, France)
Large-scale machine learning and convex optimization (pdf)
- Philippe Besse (INSA Toulouse)
Apprentissage statistique et données massives (pdf)
- Gilles Blanchard (Potsdam University, Germany Berlin)
Is adaptive early stopping possible ? (pdf)
- Stéphane Chrétien (National Physical Laboratory, Teddington, UK)
Robust PCA via Lagrange duality (pdf)
- Stéphane Gaïffas (Ecole Polytechnique, Paris
Statistical learning with Hawkes processes and new matrix concentration inequalities (pdf)
- Pierre Geurts (Université de Liège, Belgique)
Random forests variable importances: Towards a better understanding and large-scale feature selection (pdf)
- Claire Lacour (Université Paris Sud)
About the Goldenshluger-Lepski methodology for bandwidth selection (pdf)
- Matthieu Lerasle (Université Nice Sophia Antipolis)
Subgaussian estimators of the mean (pdf)
- Clément Levrard (Université Paris Diderot)
Simplicial Manifold Reconstruction via Tangent Space Estimation (pdf)
- Sébastien Loustau (Université d’Angers)
Quantization, Learning and Games (pdf)
- André Mas (Université de Montpellier)
Eigenvalue-free risk bounds for PCA projectors (pdf)
- Eric Sibony (Telecom Paris Tech)
A multi resolution framework for the statistical analysis of ranking data (pdf)
- Gilles Stoltz (CNRS, HEC Paris, France)
Robust online aggregation of ensemble forecasts with applications to the forecasting of electricity consumption and of exchange rates (pdf)
- Alexandre Tsybakov (CREST-ENSAE)
Oracle inequalities for network models and sparse graphon estimation (pdf)