CONFERENCE

Foliations and Diffeomorphism Groups
Feuilletages et Groupes de Difféomorphismes

9 – 13 December, 2024

INTRANET FOR ORGANIZERS

Scientific Committee 
Comité scientifique 

Danny Calegari (University of Chicago)
Bertrand Deroin (CY Cergy Paris Université)
Kathryn Mann (Cornell University)
Rachel Roberts (Washington University in St.Louis)
Takashi Tsuboi (Riken iTHEMS)

Organizing Committee
Comité d’organisation

Hélène Eynard-Bontemps (Université Grenoble Alpes)
Gaël Meigniez (Aix-Marseille Université)
Sam Nariman (Purdue University)
Mehdi Yazdi (King’s College London)

The study of diffeomorphism and homeomorphism groups of manifolds is intimately tied to the study of foliations, and some of the most prominent open problems in the area such as the Haefliger–Thurston conjecture and the L-space conjecture are concerned with the connections between these two subjects.

In the past decade, there has been much progress on both fronts including dynamics of group actions on manifolds and the regularity of actions and foliations, algebraic properties of diffeomorphism groups, invariants of foliations, the Mather–Thurston homology equivalence, the group cohomology of diffeo-morphism groups and their boundedness properties, understanding the topology of spaces of foliations, representation of surface groups into diffeomorphism groups of the circle, and actions of 3-manifold groups on 1-manifolds via taut foliations.

The goal of the conference is to bring together international experts and young researchers working in foliations theory, diffeomorphism groups, 3-manifold topology, bounded cohomology, and 1-dimensional dynamics to share their insights and expertise and to foster collaborations that will lead to progress on important problems in both areas. Furthermore, to navigate the impact of the recent advances in each of these areas on the others, there will be minicourses to introduce young researchers to some of the major recent advances in these areas and there will be problem sessions and informal learning groups to come up with new problems within the scope of current techniques and long term projects between the subfields.

L’étude des groupes de difféomorphismes et d’homéomorphismes de variétés est intimement liée à celle des feuilletages, et certains des problèmes ouverts les plus célèbres du domaine comme la conjecture d’Haefliger–Thurston et la conjecture du L-espace, concernent les connexions entre ces deux sujets.

Au cours de la dernière décennie, il y a eu d’importantes avancées sur les deux fronts notamment concernant la dynamique des actions de groupes sur les variétés et la régularité des actions et des feuilletages, les propriétés algébriques des groupes de difféomorphismes, les invariants des feuilletages, l’équivalence d’homologie de Mather-Thurston, la cohomologie des groupes et la cohomologie bornée des groupes de difféomorphismes, la topologie des espaces de feuilletages, les représentations de groupes de surfaces dans les groupes de difféomorphismes du cercle, et les actions de groupes de 3-variétés sur les 1-variétés via les feuilletages tendus.

Le but de la conférence est de réunir des experts internationaux et de jeunes chercheurs travaillant en théorie des feuilletages, groupes de difféomorphismes, topologie des 3-variétés, cohomologie bornée et dynamique unidimensionnelle afin qu’ils partagent leurs visions et leurs expertises et dans le but d’encourager des collaborations qui permettront de progresser sur d’importants problèmes dans les deux domaines. De plus, pour répercuter les avancées récentes de chacun des sous-domaines sur les autres, il y aura des mini-cours qui présenteront aux jeunes chercheurs certaines des principales avancées récentes dans ces domaines, et des sessions de problèmes et des groupes de travail informels pour dégager de nouveaux problèmes accessibles à l’aide des techniques actuelles et des projets à longs termes entre les différents sous-domaines.

MINI-COURSES

A theorem of Barbot (building on work of Ghys, Haefliger and others) says that Anosov flows on 3-manifolds are classified up to orbit equivalence by the data of a pair of transverse foliations of the plane and an action of the fundamental group of the 3-manifold. 
In recent work with T. Barthelmé, as well as C. Bonatti, S. Fenley and S. Frankel, we have been developing an abstract theory of Anosov-like group actions of bifoliated planes, applicable both to the study of flows and as an interesting class of foliation-preserving dynamical systems in its own right. This minicourse will explain some of this theory and the connections between flows and group actions in dimensions 1, 2 and 3.  

Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).

Real-analytic manifolds are studied very much in the last century until the time when people found the partition of unity on smooth manifolds makes the manifold theory very tractable. The group of real-analytic diffeomorphisms is the natural automorphism group of the real-analytic manifold. Because of the analytic continuation, there are no partition of unity by functions with support in balls. The germ at a point of a real-analytic diffeomorphism determines the diffeomorphism and hence the group of them looks rigid. However, the group of real-analytic diffeomorphisms is dense in the group of smooth diffeomorphisms and diffeomorphisms can exhibit all kinds of smooth stable dynamics. I would like to convince the audience that the group of real-analytic diffeomorphisms is a really interesting object.
In the first course, I would like to review the theorem by Herman which says the identity component of the group of real analytic diffeomorphisms of the n-torus is simple, which gives a motivation to study the group for other manifolds. We also review several fundamental facts in the real analytic category.
In the second course, we introduce the regimentation lemma which can play in the real analytic category the role of the partition of unity in the smooth category. For manifolds with nontrivial circle actions, we show that any real analytic diffeomorphism isotopic to the identity is homologous to a diffeomorphism which is an orbitwise rotation.
In the third course, we state a lemma which says that the multiple actions of the standard action on the plane is a final (terminal) object in the category of circle actions. This lemma would imply that the identity component of the group of real analytic diffeomorphisms is perfect.
 

TALKS

Rachel Roberts (Washington University in St. Louis)  Persistently foliar knots
 
 

SHORT TALKS

Ivan Dynnikov (Russian Academy of Sciences)   Rectangular diagrams of taut foliations in knot complements
Vincent Goverse (Imperial College London)  A counterexample to Hölder regularity of the stationary measure for random noninvertible maps
Cheikh Khoule (Université Cheikh-Anta-Diop)   Affine deformations of codimension 1 foliations into contact structures
Shuhei Maruyama (Kanazawa University)   McDuff’s secondary class and the Euler class of foliated sphere bundles
Hiraku Nozawa (Université de Ritsumeikan)   Harmonic measures and rigidity for surface group actions on the circle
Bhola Nath Saha ( Indian Institute of Technology Kanpur)   Length of filling pairs on punctured surfaces
Diego Santoro (University of Vienna)   Taut foliations from knot diagrams
Abdoul Karim Sane (Université Cheikh-Anta-Diop)   Foliation of 3-manifolds and their Thurston norms
Chaitanya Tappu (Cornell University)   A Moduli Space of Marked Hyperbolic Structures for Big Surfaces
Michele Triestino (CNRS, Université de Bourgogne)   Moduli spaces of group actions on the line
 

SPONSORS