BIBLIOGRAPHY
- Ian Agol, Marc Culler, Peter B. Shalen, Singular surfaces, mod 2 homology, and hyperbolic volume. I. Trans. Amer. Math. Soc. 362 (2010), no. 7, 3463–3498. – https://arxiv.org/abs/math/0506396
- Marc Culler, Peter B. Shalen, 4-free groups and hyperbolic geometry. J. Topol. 5 (2012), no. 1, 81–136. – https://arxiv.org/abs/0806.1188
- Warren Dicks, Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture. Invent. Math. 117 (1994), 373–389. – https://doi.org/10.1007/BF01232249
- Rosemary K. Guzman, Hyperbolic 3-manifolds with k-free fundamental group. Topology Appl. 173 (2014), 142–156. – https://doi.org/10.1016/j.topol.2014.05.018
- Rosemary K. Guzman, Peter B. Shalen, The geometry of k-free hyperbolic 3-manifolds. J. Topol. Anal. – https://doi.org/10.1142/S1793525320500016
- Joshua E. Hunt, The Hanna Neumann Conjecture and the rank of the join. arXiv:1509.04449 – https://arxiv.org/abs/1509.04449
- Wilfried Imrich, Thomas Mueller, On Howson’s theorem. Arch. Math. (Basel) 62 (1994), no. 3, 193–198. – https://doi.org/10.1007/BF01261357
- Sergei V. Ivanov, On a conjecture of Imrich and Mueller. J. Group Theory 20 (2017), no. 4, 823–828. – https://doi.org/10.1515/jgth-2016-0056
- Sergei V. Ivanov, On joins and intersections of subgroups in free groups. J. Comb. Algebra 2 (2018), 1–18. – https://arxiv.org/abs/1607.04890
- Richard P. Kent IV, Achievable ranks of intersections of finitely generated free groups. Internat. J. Algebra Comput. 15 (2005), no. 2, 339–341. – https://arxiv.org/abs/math/0401266
- Richard P. Kent IV, Intersections and joins of free groups. Algebr. Geom. Topol. 9 (2009), no. 1, 305–325. – https://arxiv.org/abs/0802.0033
- Larsen Louder, D.B. McReynolds, Graphs of subgroups of free groups. Algebr. Geom. Topol. 9 (1) (2009), pp. 327–355. – https://arxiv.org/abs/0901.3774
- Ignat Soroko, Realizable ranks of joins and intersections of subgroups in free groups. Internat. J. Algebra Comput., Vol. 30, No. 03 (2020), pp. 625–666. – https://arxiv.org/abs/1901.04463