RESEARCH IN RESIDENCE
Spectral asymptotics for Schrödinger operators with matrix-valued magnetic fields
Spectre d’opérateurs de Schrödinger avec champ magnétique matriciel
14 – 18 April, 2025
Participants
Thibault Lefeuvre (Sorbonne Université)
Léo Morin (University of Copenhagen)
Nicolas Raymond (Université d’Angers)
References
[1] J.-M. Barbaroux, L. Le Treust, N. Raymond, and E. Stockmeyer. The Dirac bag model in strong magnetic fields. Pure Appl. Anal., 5(3):643–727, 2023.
[2] V. Bonnaillie-Noël, F. Hérau, and N. Raymond. Purely magnetic tunneling effect in two dimensions. Invent. Math., 227(2):745–793, 2022.
[3] M. Cekić and T. Lefeuvre. Semiclassical analysis on principal bundles, 2024.
[4] F. Hérau and N. Raymond. Semiclassical spectral gaps of the 3d Neumann Laplacian with constant magnetic field. Ann. Inst. Fourier, 74(3):915–972, 2024.
[5] L. Morin. Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle. Confluentes Math., 14(1):65–79, 2022.
[6] L. Morin. A semiclassical Birkhoff normal form for symplectic magnetic wells. J. Spectr. Theory, 12(2):459–496, 2022.
[7] L. Morin. A semiclassical Birkhoff normal form for constant-rank magnetic fields. Anal. PDE, 17(5):1593–1632, 2024.