MULTIYEAR PROGRAM
RESEARCH SCHOOL - ÉCOLE DE RECHERCHE

Francophone Computer Algebra Days
Journées nationales de calcul formel

10 – 14 March, 2025

INTRANET FOR ORGANIZERS

Scientific Committee 
Comité scientifique

Magali Bardet (Université de Rouen)
Jérémy Berthomieu (Sorbonne Université)
Nicolas Brisebarre (CNRS – ÉNS Lyon)
Laurent Busé (INRIA Sophia Antipolis)
Eleonora Guerrini (Université de Montpellier)
Vincel Hoang Ngoc Minh (Université Sorbonne Paris Nord)
Pierre-Vincent Koseleff (Sorbonne Université)
Guillaume Moroz (Inria Nancy Grand-Est)
François Ollivier (CNRS – École Polytechnique)
Clément Pernet (Université Grenoble Alpes)
Mohab Safey El Din (Sorbonne Université)
Pierre-Jean Spaenlehauer (INRIA Nancy Grand-Est)
Tristan Vaccon (Université de Limoges)

Organizing Committee
Comité d’organisation

Florent Bréhard (CNRS – Université de Lille)
Pierre Lairez (INRIA, Université Paris Saclay)
Romain Lebreton (Université de Montpellier)
Aude Maignan (Université de Grenoble Alpes)
Fatemeh Mohammadi (KU Leuven)

contact: orga-jncf2025@groupes.renater.fr

Computer Algebra refers to the study and design of algorithms for manipulating mathematical expressions and objects. It is naturally at the interface between Mathematics, Computer Science, and various application fields. It covers a wide range of subjects, such as effective linear algebra, algorithmic number theory, integration and summations in closed-form expression, differential and polynomial system solving, or special functions. The French Computer Algebra community takes part in the organization of the main international conferences (ISSAC, FoCM, MEGA, . . . ). On top of scientific excellence in their theoretical works, members of this community also develop for widely used software such as Maple, SageMath and Magma, and software libraries such as mpfr, pari, fgb, rs, linbox, etc. The vitality of this community is also recognized by prestigious national prizes (e.g. CNRS medal). This success is notably due to the Journées Nationales de Calcul Formel (JNCF), which is a remarkable opportunity for researchers to discuss recent and ongoing work with their peers. Expected outcomes include:

  • A better integration of young researchers. The JNCF are an ideal opportunity for young researchers to present their results for the first time and also to get an overview of the various advances in Computer Algebra. This is especially important in the Computer Algebra community, where researchers need to build skills in both Computer Science and Mathematics.
  • New collaborations and interactions. The JNCF have traditionally been an opportunity to create successful collaborations between researchers from different parts of France. The JNCF has also opened to an international community, while remaining primarily French-speaking. The previous editions already included courses and contributed talks by colleagues from other European and Mediterranean countries.

Le calcul formel désigne la conception et l’analyse d’algorithmes pour la manipulation d’expressions et d’objets mathématiques. C’est une discipline à l’interface des mathématiques, de l’informatique et de différents domaines d’application. Il recouvre de nombreux sujets, de la théorie algorithmique des nombres à la résolution de systèmes polynomiaux ou différentiels en passant par les fonctions spéciales ou l’algèbre linéaire effective. La communauté française de calcul formel participe à l’organisation des principales conférences internationales (ISSAC, FoCM, MEGA, . . . ). Reconnus internationalement pour leurs contributions théoriques, les membres de la communauté participent également au développement de logiciels largement utilisés comme Maple, SageMath, Magma, ainsi que de bibliothèques comme mpfr, pari, fgb, rs, linbox, etc. Sa vitalité doit beaucoup aux Journées nationales de calcul formel (JNCF), qui représentent une opportunité remarquable pour les chercheurs d’échanger avec leurs pairs autour de travaux récents ou en cours. Les résultats que nous attendons sont en particulier :

  • Faciliter l’intégration des jeunes chercheurs. Les journées représentent une opportunité idéale pour les jeunes chercheurs de présenter leurs résultats pour la première fois et de se faire une idée d’ensemble des avancées dans le domaine. Cela revêt une importance particulière dans la communauté du calcul formel, où il est nécessaire d’acquérir de l’expérience à la fois en informatique et en mathématiques.
  • De nouvelles collaborations et interactions. Les JNCF ont traditionnellement été l’occasion de démarrer des collaborations fructueuses entre chercheurs de différents pôles en France. Elles sont depuis quelques années ouvertes à une communauté internationale, tout en maintenant un caractère majoritairement francophone. Lors des dernières éditions, des cours et exposés étaient assurés par des collègues d’autres pays européens ou méditerranéens.

LECTURES 

Given a computer algebra problem described by polynomials with rational coefficients, I will present various tools that help measuring the cost of solving it, where cost means giving bounds for the degrees and heights (i.e. bit-sizes) of the output in terms of those of the input data. I will detail an arithmetic Bézout inequality and give some applications to zero-dimensional polynomial systems. I will also speak about the Nullstellensatz and Perron’s theorem for implicitization, if time permits.

Users of computer algebra systems expect these systems to be able to perform numerical calculations to arbitrary precision. They may also, perhaps somewhat optimistically, assume that the outputs will be accurate or even that they will have the status of rigorously proven results. This mini-course will explore ways to achieve these goals when computing solutions of ordinary differential equations. The focus will be on Taylor methods, a family of numerical methods that are well-suited to arbitrary precision computations and can be adapted to provide rigorous error bounds. More specifically, we will concentrate on linear differential equations whose coefficients depend polynomially on the time variable, and examine algorithms dedicated to this class of equations. This is motivated by applications in fields ranging from combinatorics or theoretical physics to algebraic geometry and number theory that require evaluating solutions of equations of this type to accuracies in the thousands of decimal f igures. We will also discuss some practical implementation results and applications.

This course is dedicated to core algorithms of polyhedral geometry and covers theoretical aspects as well as practical ones. We will start with rational polyhedra, their projections and the conversions between their different types of representations. We will continue with a tour of the different questions related to the lattice points of rational polyhedra : checking existence, counting these points, describing them, in particular for the case of parametric polyhedra. Practical applications of rational polyhedra and lattice polyhedra require, at least in theory, to perform quantifier elimination; we will see how this is done in the context of optimizing compilers.

CONTRIBUTED  TALKS

Albin Ahlbäck (CNRS, LIX, École Polytechnique) Fast arbitrary-size integer routines on modern hardware
Magali Bardet  (Université de Rouen)   Complexity Analysis of the MinRank Problem with Support-Minors Modeling
Enrica Barrilli (Inria)    Additive decomposition of tensors
Erdenebayar Bayarmagnai (KU Leuven)   Algebraic Geometry for Computing Loop Invariants
Jérémy Berthomieu (CNRS, Sorbonne Université)   msolve : A Library for Solving Polynomial Systems
Ricardo Buring (Inria Saclay – Ile-de-France)  Graph cohomology classes by successive approximation
Louis Gaillard  (ENS Lyon) A unified approach for degree bound estimates of linear differential operators 
Camille Garnier (Université de Limoges)  Linearized CRT Codes
Jürgen Gerhard (Maplesoft of Waterloo)   What’s new in MAPLE 2025
Edern Gillot (Sorbonne Université)   Bit Complexity of Finding Points Per Connected Components of Real Semi-Algebraic Sets Defined by a Single Polynomial
Alexandre Guillemot (Inria Saclay – Ile-de-France)   Algpath: A Software for Certified Algebraic Path Tracking
Alaa Ibrahim (ENS Lyon)  Positivity Proofs for Linear Recurrences through Invariant Cones
Martin Jalard (INRIA de Sophia Antipolis)   Closed Slices for Orbit Separation and Stratification of SO3 Representations
Hiroshi Kera (Chiba University) Learning to Compute Gröbner Bases 
Robin Kouba (Sorbonne Université)   Complexity of F4 Tracer for Gröbner Basis Computation
Dimitri Lesnoff (Sorbonne Université)    Multiword Matrix Decomposition with Floating-Point Representation for Modular Arithmetic
Arnaud Minondo (LIX, École polytechnique)   Efficient Reliable Runge-Kutta Integration Processes
Rafael Mohr (Inria Saclay)  On the Computation of Whitney Stratifications
Chenqi Mou (Beihang University)  Puzzle Ideals for Grassmannians
Yulia Mukhina (École polytechnique)   Elimination in Polynomial Dynamical Systems via a Support Bound
Rubén Muñoz-Bertrand (CNRS, Université de Franche-Comté)  Faster Computation of Witt Vectors Ring Laws
François Ollivier (CNRS, LIX École Polytechnique)    Flat Difference Systems and Field Intersections
Pierre Pébereau  (Sorbonne Université)   Geometric Approach to the Cryptanalysis of UOV
Louis Roussel (Université de Lille)    Recent Progress for Integral Elimination
Julien Soumier (Inria Nancy)  Computing Isomorphisms Between Products of Supersingular Elliptic Curves Over Finite Fields
Camille Pinto (Inria Paris & Sorbonne Université)   Effective Proof of the Integro-Differential Ring
Kevin Tran (Sorbonne Université) Quasi-Linear Algorithm for Guessing C-Recurrences of Bi-Indexed Sequences w.r.t. the Lexicographic Ordering 
Tristan Vaccon (Université de Limoges)  Slope Factorization of Matrices Over Discrete Valuation Fields 
Thi Xuan Vu (Université de Lille)  Connectivity in Symmetric Semi-Algebraic Sets
Martin Weimann (Université Caen Normandie)   Improved Convex-Dense Bivariate Factorization
Chaoping Zhu (Sorbonne Université)  Rational SOS Certificates of Any Polynomial Over Its Zero-Dimensional Gradient Ideal 

SPONSORS