Tame geometry
Géométrie modérée

10 – 14 February, 2025


Scientific Committee 
Comité scientifique

Gal Binyamini (Weiezmann Institute of Science)
Raf Cluckers (Université de Lille)
Salma Kuhlmann (University of Konstanz)
Olivier Le Gal (Université de Savoie)
Lou van den Dries (Urbana-Champaign Illinois University)

Organizing Committee
Comité d’organisation

Mickaël Matusinski (Université de Bordeaux)
Guillaume Rond (Aix-Marseille Université)
Tamara Servi (Université Paris-Cité)
Patrick Speisseger (MacMaster University)

Generalizing semi-algebraic and global subanalytic geometry, o-minimal geometry has proven to be the natural axiomatic framework for tame geometry as envisioned by Grothendieck. Wilkie’s proofs of the o-minimality of the exponential function, as well as of restricted Pfaffian functions, are fundamental examples of o-minimal structures related to non-oscillatory solutions of differential equations. This relates in particular to Hilbert’s 16th problem: determining the number of limit cycles of planar polynomial vector fields (Roussarie, Écalle, Il’Yashenko). In the same spirit, recent works concern non-oscillatory solutions of natural functional equations, such as transexponential functions or iterated fractional exponentials (Abel, Schroeder). Some of the key tools for proving o-minimality come from resolution of singularities: preparation theorems, rectilinearization, stratification.


Matthias Aschenbrenner (University of  Vienna) : Hardy fields and transseries.
Tobias Kaiser (University of Passau) : Relations between o-minimality, Hardy fields and Hibert 16th Problem.


Thomas Grimm (Utrecht University)
Will Johnson (Fundan University)
Elliot Kaplan (McMaster University)
Sebastian Krapp (University of Konstanz)
Adele Padgett (McMaster University)
Maja Resman (University of Zagreb)
Silvain Rideau-Kikuchi (ENS Paris)
Fernando Sanz (University of Valladolid)
Margaret Thomas (Purdue University)
Floris Vermeulen (KU leuven)
Benny Zak (Weizmann Institute)