Scientific Committee
Comité scientifique
Sébastien Boucksom (CNRS – Sorbonne Université)
Stefan Kebekus (University of Freiburg)
Anne Moreau (Université Paris-Saclay)
Christophe Mourougane (Université de Rennes)
Organizing Committee
Comité d’organisation
Benoît Cadorel (Université de Lorraine)
Thibaut Delcroix (Université de Montpellier)
Enrica Floris (Université de Poitiers)
This conference is the 2024 meeting of the french Réseau thématique « Géométrie algébrique et singularités »: its main goal is to bring together algebraic and complex geometers around recent progress and hot topics in algebraic and complex geometry or related fields.
The core of the program will consists of five mini-courses given by internationally renown researchers, which will present in detail the last results in a recent topic, after recalling the fundamental ideas of the domain. The chosen topics are varied but share common interests, notably around representation theory, the study of moduli spaces and their birational geometry, and the related rationality questions…
Afternoon sessions will be devoted to 50-minute research talks on more specialized topics — the deadline for submitting talks will appear soon on the webpage. Around 8 such talks will be scheduled, plus a session for shorter talks (10-minute talks each) during the week, to allow for participants to present open questions, or to give the opportunity to young PhD students to present their first works.
Proposals for the 50 minutes research talks can be sent to Sébastien Boucksom before September 13. The scientific committee will give its decision on the selected talks at the beginning of October.
Cette conférence est la rencontre annuelle 2024 du Réseau thématique « Géométrie algébrique et singularités »: son objectif principal est de rassembler des géomètres algébriques et complexes autour des progrès récents et des sujets d’actualité en géométrie algébrique complexe et d’autres domaines reliés.
Le cœur du programme consistera en cinq mini-cours donnés par des chercheurs·ses internationalement reconnu·es, qui présenteront en détail les derniers résultats de plusieurs thématiques récentes, après avoir rappelé les idées fondamentales du domaine. Les sujets choisis sont variés, mais partagent des intérêts communs, notamment autour de la théorie des représentations, de l’étude des espaces de modules et de leur géométrie birationnelle, et les questions de rationalité associées…
Les après-midis seront dédiés à des exposés de recherche de 50 minutes sur des sujets plus spécialisés — la deadline pour soumettre des exposés sera annoncée prochainement. Environ 8 exposés seront prévus, en plus d’une session d’exposés courts (10 minutes chacun) durant la semaine — celle-ci permettra aux participant·es de présenter des questions ouvertes, ou de donner l’occasion aux jeunes doctorant·es de présenter leurs premiers travaux.
Les propositions pour les exposés de 50 minutes seront à envoyer à Sébastien Boucksom avant le 13 septembre. Le comité scientifique donnera sa décision sur les exposés retenus au début du mois d’octobre.
MINI-COURSES
The mornings will be devoted to five mini-course (each divided into three 45-minute sessions) on important recent works in algebraic geometry, complex geometry, or related fields. The topics of these mini-courses are:
Olivier Benoist (CNRS – École Normale Supérieure – PSL) Rationality over arbitrary fields and intermediate Jacobians
Abstract : An algebraic variety over a field k is said to be k-rational if it is birational to a projective space over k. Deciding whether a given variety is k-rational is an important and often difficult problem in birational geometry. After a general introduction to this topic, with an emphasis on the case when k is not algebraically closed, we will focus on the Clemens-Griffiths method of disproving k-rationality using intermediate Jacobians. This series of lectures will be partly based on joint work with Olivier Wittenberg.
Gergely Bérczi (Aarhus University) Geometric invariant theory and moment maps for non-reductive group actions.
Abstract : Geometric Invariant Theory (GIT) was developed by Mumford in the 1960s to provide a systematic description of quotients of algebraic varieties by reductive algebraic groups in algebraic geometry. A key topological and computational aspect of this theory is that, due to the work of Ness and Kirwan in the 1980s, these GIT quotients are canonically isomorphic to symplectic quotients of the zero level set of moment maps.
In this mini-course, I will explain how this picture extends to a broad class of non-reductive groups. I will start with the construction, showing that all key features and computational advances of reductive GIT, such as the Hilbert-Mumford criteria, extend naturally. Then, we will introduce a canonical non-reductive moment map and explain that the constructed GIT quotient is isomorphic to the corresponding symplectic quotient. This leads to an effective intersection theory on non-reductive quotients with a Jeffrey-Kirwan type integral formula. If time permits, we will mention some recent applications in enumerative geometry.
Cédric Bonnafé (CNRS – Université de Montpellier) K3 surfaces and complex reflection groups (Joint work with A. Sarti)
Abstract : Several exceptional varieties can be built using invariant theory of finite complex reflection groups (surfaces with many singular points, with many lines or conics, particular symplectic singularities…). In these lectures, we focus on the construction of K3 surfaces with big Picard number. We revisit and extend earlier works of Barth and Sarti, by making a more systematic use of the theory of complex reflection groups (invariants, Springer theory). This course can be seen as a systematic interplay between group theory and algebraic geometry, with the aim to construct explicitly exceptional objects in « classical » algebraic geometry.
Yohan Brunebarbe (CNRS – Université de Bordeaux) O-minimality and applications in Hodge theory
Abstract : The parameter spaces for integral polarized Hodge structure (i.e., the arithmetic quotients of period domains) are complex analytic spaces that are only rarely algebraic. However, thanks to works of Bakker-Klingler-Tsimerman and Bakker-Brunebarbe-Klingler-Tsimerman, it turns out that the constructions of period spaces and period maps in variational Hodge theory take naturally place in the intermediate category of so-called Ran,exp-definable complex analytic spaces, which enjoy both some of the local flexibility of analytic varieties and some of the global rigidity of algebraic varieties.
The goal of this minicourse will be to give an introduction to this new point of view together with some of its applications to the geometry of period maps.
Ana-Maria Castravet (Université de Versailles St-Quentin-en-Yvelines) Birational geometry of moduli spaces of curves
Abstract : T.B.A.
SPEAKERS
Rodolfo Aguilar Aguilar (University of Miami) Infinitesimal methods in mixed Hodge theory
Ekaterina Amerik (Université Paris-Saclay) Normal form of holomorphic Lagrangian submanifolds
Gustave Billon (Université de Strasbourg) Moduli spaces of branched projective structures
Thomas Dedieu (Université Toulouse III – Paul Sabatier) Classification of surfaces of large degree with respect to the sectional genus
Siarhei Finski (CNRS École polytechnique) Holomorphic Morse inequalities and Yang-Mills functionals
Franco Giovenzana (Université Paris-Saclay) On the projective duality of Kummer fourfolds and their equations
Matilde Maccan (Ruhr University Bochum) On some elliptic surfaces in positive characteristic
Niklas Müller (University of Duisburg-Essen) Minimal projective varieties satisfying 3c_2=c_1^2
Tommaso Scognamiglio (University of Heidelberg) Character stacks and varieties for Riemann surfaces
Aline Zanardini (EPFL) A glimpse into the birational geometry of quasihomogeneous cA_n singularities