Theoretical and Analytical Aspects of Kinetic equations in Plasmas 

Aspects théoriques et analytiques des équations cinétiques dans les plasmas


25 – 29 March 2024

Scientific Committee 
Comité scientifique 

Martin Campos Pinto (Max Planck Institute for Plasma Physics)
Luis Chacon (Los Alamos National Laboratory)
Jingwei Hu (University of Washington)

Organizing Committee
Comité d’organisation

Rafael Bailo (University of Oxford)
José A. Carrillo (University of Oxford)
Frédérique Charles (Sorbonne Université)
Anne Nouri (Aix-Marseille Université)

This workshop aims to explore the state of the art in the theory, analysis, and numerical simulation of plasma equations and those related to nuclear fusion, specifically relating to kinetic theory. We wish to encompass the Vlasov-Poisson equation, the Landau equation, the Maxwell equations, and derivative models.

The workshop will focus on theoretical advances on these equations, on their numerical simulation, and on their applications. We aim to bring together researchers from several fields, both based at mathematics departments, and institutes that specialise in plasma. In that way, we hope to establish connections between the theoreticians and the practitioners to advance in the efficient computation of kinetic equations in plasma fusion.


Nuno Alves (University of Vienna)  Zero-electron-mass and quasi-neutral limits for bipolar Euler-Poisson systems
Mehdi Badsi (Université de Nantes)  Plasma sheath solutions for a bi-species Vlasov- Poisson-BGK model
Dominik Bell (Max Planck Institute for Plasma Physics)  Vlasov-Maxwell Models with delta-f Methods and their Hamiltonian Formulations
Emily Bourne (École Polytechnique Fédérale de Lausanne)  Distributing Calculations with Splines
Stéphane Brull (Université de Bordeaux)  Discrete BGK scheme for the bitemperature Euler system and application to MHD
James Buchanan (UK Atomic Energy Authority)  Gaussian Process Emulation of Kinetic Instabilities in Spherical Tokamaks
Yingda Cheng (Virginia Tech)  A micro-macro decomposed reduced basis method for the time-dependent radiative transfer equation
Nicolas Crouseilles (Centre Inria Université de Rennes)   TBA
Bruno Despres (Sorbonne Université)  Gyrokinetic equations discretized with Hermite based moment methods
Laurent Desvillettes (Université Paris Cité)  About the Landau collision kernel of plasma theory
Giacomo Dimarco (University of Ferrara)  Control and uncertainty quantification through deep neural networks for plasma simulation
Lukas Einkemmer (University of Innsbruck)  Theory and numerics of asymptotic preserving lowrank schemes
Francis Filbet (Université Toulouse III – Paul Sabatier)  A structure and asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck model
Thierry Goudon (INRIA Sophia Antipolis)  A two-dimensional pseudo-gravity model: a model for magneto-optical traps
Maria Pia Gualdani (The University of Texas at Austin)  Global smooth solutions of the Landau-Coulomb equation in L3/2
Frédéric Hérau (Université de Nantes)  Low temperature analysis and metastability for kinetic models with several conservation laws
Maxime Herda (Université de Lille)  Vlasov-Fokker-Planck model of relativistic charged particle beams
Tino Laidin (Université de Lille)  Discrete hypocoercivity for a nonlinear kinetic reaction model
Annamaria Massimini (Vienna University of Technology)  Finite volumes for a generalized Poisson-Nernst- Planck system with cross-diffusion and size exclusion
Andrea Medaglia (University of Pavia)  Particle stochastic-Galerkin methods for the Landau equation with random inputs
Michel Mehrenberger (Aix-Marseille Université)  The semi-Lagrangian method with polar type coordinates for guiding center simulations
Damien Prel (Universitéde Nantes)  Deterministic particles method for Fokker-Planck equation
Alexandre Rege (ETH Zürich)  Uniqueness and stability for magnetized Vlasov equations
Thomas Rey (Université Côte d’Azur)  Projective integration methods for multiscale kinetic equations
Yijia Tang (Karlsruher Institute of Technology)  Random batch particle method for the homogeneous Landau equation
Maxence Thévenet (Deutsches Elektronen-Synchrotron)  Particle-in-cell simulations for plasma acceleration: combining advanced numerical methods and GPU computing