CONFERENCE

From smooth to C⁰ symplectic geometry: topological aspects and dynamical implications
Géométrie symplectique de lisse à C⁰: aspects topologiques et implications dynamiques

3 – 7 July 2023

Scientific Committee 
Comité scientifique 

Vincent Colin (Nantes Université)
Michael Hutchings (University of California, Berkeley)
Dusa McDuff (Columbia University)

Organizing Committee
Comité d’organisation

Gabriele Benedetti (Free University of Amsterdam)
Vincent Humilière (Sorbonne Université)
Rémi Leclercq (Université Paris-Saclay)
Sobhan Seyfaddini (CNRS, Sorbonne Université)
Sheila Sandon (CNRS, Université de Strasbourg)

Having originated in classical mechanics, the fields of symplectic topology and Hamiltonian dynamics, as well as their odd-dimensional counterparts, contact topology and Reeb dynamics, have expanded significantly over the past four decades. Nowadays, they form large and active mathematical domains with numerous interactions with areas such as low-dimensional topology, algebraic geometry, string topology, quantum mechanics, semi-classical analysis and surface dynamics. Gromov’s pseudo-holomorphic curves and the various flavors of Floer homology have had profound consequences on the above domains. We are particularly interested in the applications of these methods to Hamiltonian and Reeb dynamics, C 0 symplectic/contact topology, and quantitative aspects of symplectic/contact topology. This conference will bring together a large group of mathematicians, ranging from leading experts of these domains to PhD students, putting accent on the recent results.

La topologie symplectique et la dynamique hamiltonienne, ainsi que leurs cousines en dimension impaire la topologie de contact et la dynamique de Reeb, ont leurs origines dans l’étude de la mécanique classique, mais se sont développées de manière spectaculaire lors des quatre dernières décennies et forment à présent un large domaine des mathématiques interagissant avec de nombreux autres tels que la topologie de petite dimension, la géométrie algébrique, la topologie des cordes, la mécanique quantique, l’analyse semi-classique et la dynamique des surfaces. Les courbes holomorphes de Gromov et les différentes variantes d’homologie de Floer ont eu un impact considérable. Nous sommes particulièrement intéressés par leurs applications aux dynamiques hamiltoniennes et de Reeb, par la topologie symplectique/contact C 0 et par les aspects quantitatifs de la géométrie symplectique/contact. Le but de cette conférence est de réunir un large groupe de mathématiciens, comprenant aussi bien des leaders mondiaux de ces thématiques que des doctorants, autour d’exposés mettant l’accent sur les résultats récents.

SPEAKERS

Alberto Abbondandolo (Ruhr University Bochum)    Symplectic capacities of domains close to the ball and quasi-invariant contact forms
Marcelo Ribeiro De Resende Alves (University of Antwerp)    C⁰-stability of topological entropy for 3-dimensional Reeb flows
Dylan Cant (Université de Montréal)     Contact dynamical systems and translated points
Robert Cardona (Technical University of Catalonia)    Dynamics of stable Hamiltonian structures
Julian Chaidez (Princeton University)    Elementary SFT Spectral Invariants And The Strong Closing Property
Erman Çineli (Sorbonne Université)     The strong closing lemma and Hamiltonian pseudo-rotations
Dustin Connery-Grigg (Sorbonne Université)  Dynamical interpretation of Floer-theoretic phenomena in low dimensions
Octav Cornea (Université de Montréal)    Persistence K-theory for Lagrangian submanifolds
Dan Cristofaro-Gardiner (University of Maryland)  The failure of packing stability
Patricia Dietzsch (ETH Zürich)      Lagrangian Hofer metric and barcodes
Georgios Dimitroglou Rizell (Uppsala University)     Quantitative perspective on Legendrians and non-Legendrians, with applications to C⁰-contact topology
Oliver Edtmair (University of California, Berkeley)    The subleading asymptotics of symplectic Weyl laws
Anna Florio (Université Paris Dauphine-PSL)    Right-handed (lifted) geodesic flows of the two-sphere
Basak Gurel (University of Central Florida)     The spectral norm, rigidity and all that
Pazit Haim-Kislev (Tel Aviv University)    Symplectic Barriers
Yusuke Kawamoto (ETH Zürich)    Isolated hypersurface singularities and spectral invariants
Ailsa Keating (University of Cambridge)     Symplectic mapping class groups: structural properties from smooth to C^0
Francesco Morabito (École Polytechnique)  Hofer Pseudonorms on Braid Groups and Quantitative Heegaard-Floer Homology
Agustin Moreno (Heidelberg University)     Symplectic geometry of Anosov flows in dimension three
Leonid Polterovich (Tel Aviv University)      Contact topology and thermodynamics
Rohil Prasad (Princeton University)    A pointwise estimate for low-action holomorphic cylinders
Vinicius Ramos (IMPA, Brazil)     The Toda lattice, billiards and the Viterbo conjecture
Ana Rechtman (Université de Strasbourg)     Broken/open book decompositions and entropy of 3D Reeb vector fields
Ivan Smith (University of Cambridge)  Asymptotics of link spectral invariants
Maksim Stokic (Tel Aviv University)      Flexibility of the adjoint action of the group of Hamiltonian diffeomorphisms
Claude Viterbo (Université Paris-Saclay)    The Humilière completion and some applications
Jonathan Zung (Princeton University)      Anosov flows and the pair of pants differential

SPONSORS

 
Homeomorphisms in symplectic topology and dynamics of Sobhan Seyfaddini
of Vincent Humilière
COSY coordinated by Frédéric Bourgeois