5 videos available for this event!

Geometry and Analysis on Non-Compact Manifolds
Géométrie et analyse sur les variétés non compactes

28 March – 1st April 2022

Scientific Committee
Comité scientifique

Werner Ballmann (MPI for Mathematics, Bonn)
Gérard Besson (CNRS – Université Grenoble Alpes)
Olivier Biquard (Sorbonne Université)
Claire Debord (Université de Paris)
Anna Mazzucato (Penn State University)

Organizing Committee
Comité d’organisation

Bernd Ammann (University of Regensburg)
Gilles Carron (Université de Nantes)
Nadine Große  (Freiburg University)
Victor Nistor (Université de Lorraine)

We are planning a conference that will bring together researchers in Differential Geometry, in Geometric Analysis, and in their applications. The general focus of the conference will be on recent results on manifolds with bounded geometry, on singular stratified spaces and on the geometry and analysis on these spaces. More concretely, we will invite researchers from several areas, including: complete manifolds with special holonomy and their moduli spaces, stratified spaces, index theory on Riemannian and Lorentzian manifolds, spectral theory of geometric differential operators, relations between geometric analysis and conformal geometry, such as the Yamabe problem on singular and non-compact spaces and generalizations thereof. We envision that the interactions between the participants in this Conference will lead to applications to limits and collapse of manifolds with curvature bounds, moduli spaces, general relativity, the wave equation on curved spacetimes, as well as to singular partial differential equations in general. One of the conference’s main goals will be to foster interactions between these various areas of mathematics.
Nous prévoyons d’organiser une conférence à la croisée de plusieurs thématiques : variétés à géométrie bornée, espaces singuliers stratifiés, et l’analyse globale sur ces espaces. En invitant des mathématiciens à la pointe des développements récents sur les variétés complètes à holonomie spéciales et leurs espaces de modules, théorie de l’indice sur variétés riemanniennes et lorentziennes, théorie spectrale des opérateurs différentiels géométriques, relations entre l’analyse géométrique et la géométrie conforme, y compris le problème de Yamabe sur les espaces singuliers et non compacts et généralisations de celles-ci. Cela permettra une diffusion des résultats récents d’une thématique vers une large communauté et pourra permettre des interactions par exemple vers les limites et effondrement de variétés dont la courbure est contrôlée par des équations ou inéquations, à la géométrie de certains espaces de modules, à la relativité générale (équation des ondes dans les variétés lorentziennes) et à l’analyse globale sur certains espaces singuliers.

Christian Bär (University of Postdam)    Local index theory for Lorentzian manifolds
Ivan Beschastnyi (Universidade de Aveiro (CIDMA)    Closure of the almost-Riemannian Laplace-Beltrami operator
Nelia Charalambous (University of Cyprus)    The form spectrum of open manifolds
Joel Fine (Université Libre de Bruxelles)    Knots, minimal surfaces and J-holomorphic curves
Lorenzo Foscolo (University College London)    Anti-self-dual instantons and codimension-1 collapse
Collin Guillarmou (Université Paris-Saclay)    Segal axioms and resolution of Liouville conformal field theory
Hans-Joachim Hein (University of Münster)    Smooth asymptotics for collapsing Calabi-Yau metrics
Peter Hintz (Massachusetts Institute of Technology)    Mode stability and shallow quasinormal modes of Kerr-de Sitter black holes
Oliver Petersen Lindblad (Uppsala University)    Wave equations in subextremal Kerr-de Sitter spacetimes
Ursula Ludwig (University Duisburg-Essen)    Bismut-Zhand theorem for singular spaces
Sylvie Monniaux (Aix-Marseille Université)    The magnaetohydrodynamical system on manifols in critical spaces
Rachel Perales (Instituto de Matemáticas de la UNAM)    Convergence of manifolds under volume convergence, a tensor and a diameter bound
Paolo Piazza (Sapienza University of Rome)    Proper actions of Lie groups and numeric invariants of Dirac operators
Julie Rowlett (University of Gothenburg)    Fourier expansions of vector-valued automorphic functions with non-unitary twists
Anna Sakovich (Uppsala University)    On the mass of asymptotically hyperbolic manifolds and initial data set
Thomas Schick (University of Göttingen)    The positive mass theorem in dimension 8
Cornelia Schneider (University of Erlanger-Nuremberg)    Regularity in Besov spaces of parabolic PDEs
Elmar Schrohe (Leibniz University Hannover)    Equivariant Traces for an Algebra of Fourier Integral Operators on R^n
Alexander Strohmaier (University of Leeds)    Trace formulae for scattering of differential forms
Andras Vasy (Stanford University)    The Feynman propagator, its positivity properties and essential self-adjointness of the wave operator
Yi Wang (Johns Hopkins University)    Yamabe flow of asymptotically flat metric