Quantum Groups and Cohomology Theory of Quiver and Flag Varieties
Groupes quantiques et théories cohomologiques des variétés de drapeaux et variétés carquois
14 – 18 December 2020
Scientific Committee
Comité scientifique Christof Geiss (National Autonomous University of Mexico) Organizing Committee
Comité d’organisation Bernard Leclerc (CNRS, Université de Caen) |
One of the first appearances of quantum groups came from the Yang–Baxter equation in quantum integrable systems. Since then, they where used in many other areas in mathematics and physics, such as representation theory, complex geometry, conformal field theories….
In geometry, an important source of quantum groups is given by quivers, first via Ringel’s and Lusztig’s construction in terms of Hall algebras and perverse sheaves, then, via Nakajima’s construction in terms of cohomology of quiver varieties. Recently, the quantum cohomology and quantum K–theory of quiver varieties and flag varieties appeared to play an important role in the understanding of the Yang–Baxter equation. Cluster algebras give also some more algebraic approach to quantum groups and quantum integrable systems, in particular Kirillov–Reshetikhin modules and solutions of T–systems.This conference is devoted to specialists of all research areas mentioned above (complex geometry, quantum integrable systems, representations of quantum groups, quantum cohomology…), but also to younger researchers in order to promote interactions between young mathematicians and seniors. |
Les groupes quantiques ont fait l’une de leurs premières apparitions dans les systèmes intégrables quantiques et plus précisément dans les équations de Yang–Baxter. On les retrouve ensuite dans différentes branches des mathématiques et physique comme la théorie des représentations, la géométrie complexe, les théories conformes…
En géométrie, les carquois sont une importante source de groupes quantiques, d’abord via la construction de Ringel et Lusztig en termes d’algèbre de Hall et faisceaux pervers et ensuite via la construction de Nakajima qui utilise la cohomologie des variétés carquois. Récemment, la cohomologie quantique et la K–théorie quantique des variétés carquois et des variétés de drapeaux semblent intervenir dans la compréhension de l’équation de Yang–Baxter. Les algèbres amassées donnent un autre approche algébrique aux groupes quantiques et aux systèmes quantiques intégrables, en particulier les modules de Kirillov–Reshetikhin et les solutions des T–systèmes.Cette conférence est d édiée aux spécialistes des branches de recherche mentionnées en haut (géométrie complexe, systèmes quantiques intégrables, représentations de groupes quantiques, cohomologie quantique…), mais aussi aux jeunes chercheurs pour pouvoir favoriser les échanges entre les plus jeunes et les plus expérimentés. |
Léa Bittmann (University of Vienna) Monoidal categorification of cluster algebra and quantum affine Schur-Weyl duality
Anders Buch (Rutgers University) The Seidel representation in quantum K-theory
Philippe Di Francesco (University of Illinois at Urbana-Champaign & IPhT CEA) Dualities in Macdonald/Toda theory and quantum Q-systems
Mikhail Finkelberg (State University Higher School of Economics) Elliptic zastava
David Hernandez (Université Paris-Diderot) Shifted quantum affine algebras, monoidal categorication and Langlands duality
Joel Kamnitzer (University of Toronto) Categorical g-actions for modules over truncated shifted Yangians
Syu Kato (Kyoto University) Quantum K-groups of partial flag manifolds
Allen Knutson (Cornell University) Fusion of quiver varieties for Schubert calculus
Thomas Lam (University of Michigan) Positroid varieties and q,t-Catalan numbers
Wille Liu (Université Paris-Diderot) Convolution algebras over cyclically graded Lie algebras
Michael McBreen (The Chinese University of Hong Kong) Mirror Symmetries for Hausel-Proudfoot varieties
Leonardo Mihalcea (Virginia Tech University) Mather classes for Schubert varieties in cominuscule Grassmannians
Clelia Pech Curve neighbourhoods for odd symplectic Grassmannians
Alexander Shapiro (University of California, Berkeley) Cluster realization of spherical DAHA
Mark Shimozono (Virginia Tech University) Wreath Macdonald polynomials
Peter Spacek (University of Kent) Mirror symmetry for cominuscule homogeneous spaces
Andrey Smirnov (University of North Carolina, Chapel Hill) Elliptic stable envelope for Hilbert scheme of points in the complex plane and 3D mirror symmetry
Harold Williams (University of California, Davis) Canonical Bases for Coulomb Branches
Milen Yakimov (Louisiana State University) Root of unity quantum cluster algebras, discriminants and Schubert cells