Evolution Equations: Applied and Abstract Perspectives
Equations d’évolution: perspectives appliquées et abstraites
28 October – 1 November 2019
 Scientific Committee
Comité scientifique

Herbert Amann (Universität Zürich)
Dieter Bothe (TU Darmstadt)
Raphaël Danchin (Université Paris-Est Créteil)
Reinhard Farwig (TU Darmstadt)
​Giovanni Paolo Galdi (University of Pittsburgh) 
Yoshikazu Giga (University of Tokyo)
Irena Lasiecka (University Memphis)
Alessandra Lunardi (University Parma)
Sylvie Monniaux (Aix-Marseille Université) 
Jan Prüß was a member of the organizing committee. 
He passed away on 19 July 2018.  We deeply miss him.
Edriss Titi (Texas A&M University)

Organizing Committee
Comité d’organisation

Karoline Disser (TU Darmstadt and WIAS Berlin​)
Robert Haller-Dintelmann (TU Darmstadt)
Horst Heck (Bern University of Applied Sciences)
Mads Kyed (TU Darmstadt)
Jürgen Saal (Universität Düsseldorf)
Martin Saal (TU Darmstadt)
Okihiro Sawada (Gifu University)
Ian Wood (University of Kent)

Contact the organizers:

In recent years the development of deep abstract tools played an increasingly important role for the treatment of evolution equations, due to the increasing complexity of the mathematical models. A main purpose of the conference is to bring together internationally renowned experts from both, applied and abstract fields, in order to initialize and catalyze cooperations and to steer theoretical developments into the direction of applied demands in the field of evolution equations.

In the meantime there is a number of examples for a successful interplay between the develop- ment of theoretical tools and applied evolution equations, but up-to-date and future challenges demand for a plenty of further developments in various directions. The scientific scope of the proposed conference thus comprises applied evolution equations, e.g., related to complex flu- ids, geophysical flows, fluid-structure-interaction, active fluids, free boundary problems, crystal growth, semiconductor models, etc. as well as abstract theory for evolution equations and singu- lar PDE from functional and harmonic analysis, Banach space geometry, operator and geometric measure theory, stochastic analysis, etc.
 Les années récentes ont vu le développement d’outils abstraits performants jouer un rôle de plus en plus important dans l’étude des équations d’évolution, développement en partie dû à la complexité  croissante des modèles mathématiques étudiés. Un des objectifs principaux de cette conférence est de réunir des experts reconnus internationalement dans les deux domaines, appliqué et théorique, afin d’initialiser et catalyser des coopérations et pour attirer les développements théoriques vers les besoins du domaine des équations d’évolution appliquées.

Dans le même temps, on a constaté de nombreux exemples d’interactions fructueuses entre le développement d’outils théoriques et les équations d’évolution appliquées. Cependant, les enjeux actuels et futurs réclament de nombreuses progressions dans des directions variées. Le cadre scientifique de la conférence proposée recouvre ainsi les équations d’évolution appliquées, comme par exemple les fluides complexes, les flots géophysiques, les interactions fluide-structure, les fluides actifs, les problèmes à frontière libre, la croissance des cristaux, les modèles semi- conducteurs, etc. et la théorie abstraite des équations d’ évolution et des équations aux dérivées partielles singulières utilisant les outils d’analyse fonctionnelle, d’analyse harmonique, de la géométrie des espaces de Banach, de la théorie géométrique de la mesure, de l’analyse stochastique, etc.

Helmut Abels (University of Regensburg)   Sharp interface limit of a Stokes/Cahn-Hilliard system
Wolfgang Arendt (Ulm University)    The strong minimum principle and semilinear equations with minimal regularity
Charles Batty (University of Oxford)   Rates of decay associated with operator semigroups
Sebastian Bechtel (TU Darmstadt)    The Kato square root problem on locally uniform domains
Ralph Chill (TU Dresden)   The bidomain problem as a gradient system
Raphaël Danchin (Université Paris-Est Créteil)   Analytic gain of regularity and time-decay for the compressible Navier-Stokes system with capillarity
Robert Denk (University of Konstanz)   Convex semigroups on Banach lattices
Daoyuan Fang (Zhejiang University)   Global existence and lifespan for semilinear wave equations with mixed nonlinear terms
Balint Farkas (University of Wuppertal)   Wiener’s lemma along subsequences for semigroups
Eduard Feireisl (Academy of Sciences of the Czech Republic)  Solving ill–posed problems
Patrick Guidotti (University of California, Irvine)  Global stability for a thermostat model
Toshiaki Hishida (Nagoya University)  Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains
Pascal Hobus (Heinricht-Heine-University Düsseldorf)  The Stokes equations with partial slip boundary conditions on uniform C^{2,1}-domains
Naoto Kajiwara (The University of Tokyo)   Global well-posedness for the Cahn–Hilliard equations in permeable walls
Takahito Kashiwabara (The University of Tokyo)   Remarks on the regularity of slip boundary value problems of friction type
Herbert Koch (University of Bonn)   Dispersive decay for small localized solutions to the Korteweg-de Vries equation
Hideo Kozono (Waseda University)  L r -Helmholtz-Weyl decomposition in 3D exterior domains
Klaus Kreß (TU Darmstadt)   Strong time-periodic solutions to a chemotaxis–Navier–Stokes system
Peer Kunstmann (Karlsruhe Institute of Technology)  On the NLS outside the usual settings
Jinkai Li (South China Normal University)  Global well-posedness for the primitive equations coupled to nonlinear moisture dynamics with phase changes
Xin Liu (FU Berlin)  Justification of the primitive equations
Julián López Gómez (Complutense University of Madrid)  Nodal solutions of degenerate boundary value problems
Luca Lorenzi (University of Parma)   On systems of elliptic equations with unbounded coefficients in L p -spaces​
Alessandra Lunardi  (University of Parma) Maximal Hölder regularity in stationary and evolution equations driven by differential and pseudo-differential operators 
Giorgio Metafune (University of Salento, Lecce)   L p estimates for Baouendi-Grushin operators
Piotr Mucha (Univeristy of Warszawa)  A compressible flow initiated by a drop of gas
Šárka Nečasová (Czech Academy of Sciences)  On a body with a cavity filled with compressible fluid
Serge Nicaise (Université de Valenciennes)   Linear hyperbolic systems on networks
Maximilian Rauchecker (University of Regensburg) The Mullins-Sekerka and Navier-Stokes/Mullins-Sekerka problems with contact angle
Joachim Rehberg (Weierstrass Institute)  Explicit and uniform estimates for second order divergence operators on L^p-spaces
Elisabeth Reichwein (Heinrich-Heine-University Düsseldorf)  Well-posedness of the tornado-hurricane equations
Michael Renardy (Virginia Tech)   Pure stress modes for linear viscoelastic flows with variable coefficients
Abdelaziz Rhandi (University of Salerno)   L p -theory for Schrödinger systems
Roland Schnaubelt (Karlsruhe Institute of Technology)  Bihar
monic wave maps

Elmar Schrohe (Leibniz University Hannover)   Degenerate elliptic boundary value problems with non-smooth coefficients​
Senjou Shimizu (Kyoto University)  Maximal L 1 -regularity for the parabolic boundary value problem with inhomogeneous data in the half-space 
Wilhelm Stannat (TU Berlin)   Stochastic nerve axon equations 
Ryo Takada (Kyushu University)   Asymptotic limit of strong stratification for the 3D inviscid Boussinesq equations
Edriss Titi (University of Cambridge)  Determining the Global Dynamics of the Two-dimensional Navier-Stokes Equations by a Scalar ODE
Patrick Tolksdorf (Johannes Gutenberg-University Mainz)  Da Prato and Grisvard meet global Lagrangian coordinates
Christiane Tretter (University of Bern)  Challenges in non-selfadjoint spectral problems
Marius Tucsnak (Université de Bordeaux)  Long time behavior in some fluid-interaction problems​
Lutz Weis (University of Karlsruhe)  tba
Laura Westermann (Heinrich-Heine-University Düsseldorf)  Optimal Sobolev regularity of the Stokes equations on a 2D wedge domain
Marc Wrona (TU Darmstadt) Strong well-posedness of the Beris–Edwards Q-tensor model for a general ratio of tumbling and aligning effects ξ
Masahiro Yamamoto (The University of Tokyo)   Inverse coefficient and source problems for fluid dynamics by Carleman estimates
Ruizhao Zi (Central China Normal University)  Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations