Knotted Embeddings in Dimensions 3 and 4
Plongements noués en dimension 3 et 4
12 – 16 February, 2018
Comité scientifique & Comité d’organisation
Benjamin Audoux (Aix-Marseille Université)
Sebastian Baader (University of Bern)
Ana García-Lecuona (Aix-Marseille Université)
The main purpose of the conference is to review the state of the art in the understanding of knotted surfaces in dimension 4 and how these are exploited to study knots and links in dimension 3. In particular, the interactions between the new tools that allow the description of knotted surfaces and the study of the concordance group will be analysed.
Since the number of places at CIRM is restricted, we strongly encourage all those who plan to take part in the conference to pre-register as soon as possible. Pre-registration will close at the end of October, 2017. Note that we cannot ensure participation without pre-registration or beyond the number of available places. The organisers will be able to cover living expenses for a limited number of students and young researchers. Students and young researchers wishing to have their living expenses covered must apply for funding when pre-registering. |
L’objectif principal de cette conférence est d’établir un bilan de l’étude des
surfaces nouées en dimension 4 et de leurs utilisations pour l’analyse des nœuds et des entrelacs en dimension 3. En particulier, elle vise à sonder les interactions entre les nouveaux outils de description des surfaces nouées et l’étude du groupe de concordance. Les pré-inscriptions se clôtureront fin octobre 2017. Les inscriptions seront limitées par les places disponibles, et les demandes des personnes pré-inscrites seront considérées en priorité. Les organisateurs disposent d’un budget pour couvrir les frais de séjour d’un nombre limité d’étudiants et jeunes chercheurs. Afin de bénéficier de cette aide, merci d’en faire la demande lors de la pré-inscription. |
Jae Choon Cha (Pohang University of Science and Technology) – Milnor’s question on transfinite invariants (pdf)
David Cimasoni (Université de Genève) – Covering spaces and spanning trees – VIDEO –
Peter Feller (Max Planck Institute) – Three-dimensional characterizations of the Z-slice genus
Roger Fenn (University of Sussex) – Generalized knot theories and their invariants (pdf)
Vincent Florens (Université de Pau et Pays de l’Adour) – Slopes of colored links
Stefan Friedl (Universität Regensburg) – Epimorphisms of knot groups and the genus (pdf)
David Gay (University of Georgia) – Trisections diagrams and surgery operations on embedded surfaces – VIDEO –
Naoko Kamada (Nagoya City University) – Coherent double coverings of virtual links (pdf)
Seiichi Kamada (Osaka City University) – On embedded/immersed surfaces in 4–space, their braid presentations and multiplications
Louis H. Kauffman (University of Illinois at Chicago) – Cobordism and concordance of virtual links (pdf)
Paolo Lisca (University of Pisa) – Symmetric unions and topological spin models
Andrew Lobb (University of Durham) – Quantum sln knot cohomology and the slice genus – VIDEO –
Bruno Martelli (University of Pisa) – Shadow complexity of smooth closed four-manifolds
Jeffrey Meier (University of Georgia) – Bridge trisections of knotted surfaces in four-manifolds – VIDEO –
Jean-Baptiste Meilhan (Université Grenoble-Alpes) – Knotted surfaces up to link homotopy
Delphine Moussard (RIMS, Kyoto University) – 2–knots with factorized Alexander polynomial
Brendan Owens (University of Glasgow) – Slice surfaces and double-branched covers
Mark Powell (Université du Québec à Montréal) – Surface systems for links – VIDEO –
Peter Teichner (University of California, Berkeley) – The group of disjoint 2–spheres in 4–space (pdf)
Raphael Zentner (University of Regensburg) – Irreducible SL(2, C)–representations of integer homology 3-spheres