CONFERENCE

6th International Conference on Uniform Distribution Theory — UDT2018
6e Colloque international sur la théorie de la répartition uniforme — UDT2018

1 – 5 October 2018

Scientific Committee
Comité scientifique

Shigeki Akiyama (University of Tsukuba)
Arturas Dubickas (University of Vilnius)
Christian Mauduit (Aix-Marseille Université)
Radhakrishnan Nair (University of Liverpool)
Oto Strauch (President UDT – Slovak Academy of Sciences)
Jean-Louis Verger-Gaugry (CNRS / Université Savoie Mont Blanc)

Organizing Committee
Comité d’organisation

Oleg Karpenkov (University of Liverpool)
Radhakrishnan Nair (University of Liverpool)
Jean-Louis Verger-Gaugry (CNRS / Université Savoie Mont Blanc)

The meeting aims at presenting the most recent developments in the Theory of Uniform Distribution, covering several areas in Number Theory and Ergodic Theory; in particular the topics include all theoretical and computational aspects of combinatorial, diophantine and probabilistic Number Theory. Several sessions will be devoted to continued fractions, unidimensional and multidimensional. More details of the diversity of the topics of UDT can be found there .

This Rencontre invites active researchers to present their work in these domains.

The International Conference on « Uniform Distribution Theory » UDT is a biennial event which is a very important one for the community it serves and takes place in different places throughout Europe. The field has many disparate centres primarily throughout Europe and the UDT conferences are a source of stimulation, inspiration and community to its participants.

La Rencontre a pour objectif de présenter les développements les plus récents en Théorie de la Répartition Uniforme, couvrant plusieurs domaines de la Théorie des Nombres et de la Théorie Ergodique; en particulier tous les aspects théoriques, numériques, combinatoires, diophantiens et probabilistes sont abordés. Plusieurs sessions seront consacrées aux développements en fractions continues unidimensionnelles et multidimensionnelles. Les sujets d’UDT présentent une diversité dont les détails peuvent être trouvés ici .

Cette Rencontre invite les chercheurs actifs à présenter leurs travaux dans ces domaines.

Le Colloque International sur la « Répartition Uniforme » UDT est un évènement qui se produit tous les deux ans. C’est un lieu d’échange très important pour la collectivité qu’il sert. Il est organisé dans différents lieux en Europe. Le domaine scientifique concerné est très représenté dans de nombreux Instituts et Laboratoires, principalement en Europe, et les colloques « UDT » sont une source d’inspiration, de stimulation, pour l’ensemble de la communauté.

Speaker


Christoph Aistleitner (TU Graz) Pair correlations and equidistribution
Iskander Aliev (Cardiff University) On Distances to Lattice Points in Knapsack Polyhedra (pdf)
Mohammed Amin Amri (Université Mohammed 1er) – Uniform distribution of modular signs   
Mariia Avdeeva (Institute of Applied Mathematics, Khabarovsk Division) – Basic properties of three-dimensional continued fractions (pdf)
István Berkes (University of Graz) – Random walks on the circle and Diophantine approximation (pdf)
Anne Bertrand-Mathis (Université de Poitiers) – Expansions in negative base, distribution modulo one and fractales de Rauzy​
Dmitriy Bilyk (University of Minnesota) – Discrepancy and energy optimization on the sphere​ (pdf)
John Blackman (University of Durham) – Integer Multiplication of Continued Fractions Via Geometric Methods
Alexander Bufetov (CNRS / Aix-Marseille Université) – A spectral cocycle for substitution dynamical systems
Michael Drmota (TU Vienna) The sum-of-digits function, Primes and Uniform Distribution modulo 1 (pdf)
Artūras Dubickas (Vilnius University) – On the distance to the nearest square-free polynomial​ (pdf)
Buket Eren (University of Galatasaray) – On the Markov Equation and Outer Automorphism of PGL(2, Z)​ (pdf)
Mikhail Gabdullin (Moscow State University) – On the stochasticity parameter of quadratic residues (pdf)
Dmitry Gayfulin (IITP of RAS) – Minkowski question-mark function: fixed points and the derivative​ (pdf)
Oleg N. German (Moscow State University) – Multidimensional continued fractions and Diophantine exponents of lattices (pdf)
Rita Giuliano (University of Pisa) – Rényi α-dimension of random variables with generalized Cantor distribution and Hausdorff dimension of generalized Cantor sets (pdf)
Georges Grekos (Université Jean-Monnet) – Sets with fairly distributed sumsets​
Sigrid Grepstad (Johannes Kepler University, Linz) Asymptotic behaviour of the Sudler product of sines and a conjecture of Lubinsky (pdf)
Katalin Gyarmati (Eötvös Loránd University, Budapest) On the cross-combined measure of families of binary lattices and sequences   (pdf) – VIDEO – 
Andrei Illarionov (Institute of Applied Mathematics, Khabarovsk Division)Statistical properties of Klein polyhedra (pdf)
Alexander Kalmynin (National Research University, HSE) – Large values of short character sums​ (pdf)
Lisa Kaltenböck (Johannes Kepler University Linz) – On Bounded Remainder Sets and Strongly Non-Bounded Remainder Sets for Sequences ({a_n α})_{n≥1} (pdf)
Imre Kátai (Eötvös Loránd University)Uniform distribution mod 1, results and open problems  (pdf) – VIDEO –
Jakub Konieczny (Hebrew University of Jerusalem) – Automatic and q-multiplicative sequences through the lens of higher order Fourier analysis (pdf)
Vsevolod Lev (The University of Haifa at Oranim) Uncertainty in Finite Affine Planes (pdf)
Bruno Martin (University Littoral Côte d Opale, Calais)  – Multifractal analysis of the Brjuno function (pdf)
Christine McMeekin (Cornell University) A density of ramified primes (pdf)
László Mérai (Johannes Kepler University Linz) – Distribution of short subsequences of the inversive generator (pdf)
Mariia Monina (Institute of Applied Mathematics, Khabarovsk Division) Basic properties of three-dimensional continued fractions (pdf)
Clemens Müllner (Université Claude Bernard Lyon 1) The Rudin-Shapiro sequence and similar sequences are normal along squares (pdf)
Attila Pethő (University of Debrecen)  Variations on a theme of K. Mahler (pdf)
Friedrich Pillichshammer (Johannes Kepler University, Linz) Tractability properties of the weighted star discrepancy (pdf)
sabel Pirsic (Johannes Kepler University, Linz) An extension of the digital method based on b-adic integers (pdf)
Igor Pritsker (Oklahoma State University) Uniform distribution for zeros of random polynomials   (pdf)
Olivier Ramaré (CNRS / Aix-Marseille Université)   Discrepancy estimates for generalized polynomials    (pdf)
Joël Rivat (Aix-Marseille Université) On the digits of primes and squares (pdf) VIDEO –
András Sárközy (Eötvös Loránd University, Budapest)  Quasi-random graphs and pseudo-random binary sequences (pdf) – VIDEO –
Ian Short (Open University, Milton Keynes) The Farey graph, continued fractions and SL_2 -tilings (pdf)
Iurii Shteinikov (Steklov Mathematical Institute and SRISA) – On exponential sums and equations over multiplicative subgroups in finite field (pdf)
Lukas Spiegelhofer (TU Wien) – The level of distribution of the Thue-Morse sequence (pdf)
Thomas Stoll (University of Lorraine, Nancy)The sum of digits in two different bases (pdf)
Cathy Swaenepoel (Aix-Marseille Université) – Digital questions in finite fields (pdf)
Jörg Thuswaldner (Montanuniversität Leoben) Discrepancy bounds for β-adic Halton sequences (pdf)
Robert Tichy (TU Graz) Normality and Randomness
Alexey Ustinov (Russian Academy of Sciences, Khabarovsk) An elementary approach to Somos-4 sequences (pdf)
Alexander Veselov (Loughborough University) Growth and Geometry in SL_2(Z) dynamics (pdf) – VIDEO – 
Arne Winterhof (Austrian Acad. of Sciences) – On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence along s
quares​
(pdf)
Agamemnon Zafeiropoulos (Technical University of Graz) – Metric discrepancy with respect to fractal measures

ORGANIZERS
SPONSORS, PARTNERSHIPS